TY - JOUR
T1 - Multimodality of a particle size distribution of cohesive suspended particulate matters in a coastal zone
AU - Lee, Byung Joon
AU - Fettweis, Michael
AU - Toorman, Erik
AU - Molz, Fred J.
PY - 2012
Y1 - 2012
N2 - Particle size distributions (PSDs) of suspended particulate matters in a coastal zone are lognormal and multimodal in general. The multimodal PSD, which is caused by the mixing of multiple particle and aggregate size groups under flocculation and erosion/resuspension, is a record of the particle and aggregate dynamics in a coastal zone. Curve-fitting software was used to decompose the multimodal PSD into subordinate lognormal PSDs of primary particles, flocculi, microflocs, and macroflocs. The curve-fitting analysis for a time series of multimodal PSDs in the Belgian coastal zone showed the dependency of the multimodality on (1) shear-dependent flocculation in a flood and ebb tide, (2) breakage-resistant flocculation in the spring season, and (3) silt-sized particle erosion and advection in a storm surge. Also, for modeling and simulation purposes, the curve-fitting analysis and the settling flux estimation for the multimodal PSDs showed the possibility of using discrete groups of primary particles, flocculi, microflocs, and macroflocs as an approximation of a continuous multimodal PSD.
AB - Particle size distributions (PSDs) of suspended particulate matters in a coastal zone are lognormal and multimodal in general. The multimodal PSD, which is caused by the mixing of multiple particle and aggregate size groups under flocculation and erosion/resuspension, is a record of the particle and aggregate dynamics in a coastal zone. Curve-fitting software was used to decompose the multimodal PSD into subordinate lognormal PSDs of primary particles, flocculi, microflocs, and macroflocs. The curve-fitting analysis for a time series of multimodal PSDs in the Belgian coastal zone showed the dependency of the multimodality on (1) shear-dependent flocculation in a flood and ebb tide, (2) breakage-resistant flocculation in the spring season, and (3) silt-sized particle erosion and advection in a storm surge. Also, for modeling and simulation purposes, the curve-fitting analysis and the settling flux estimation for the multimodal PSDs showed the possibility of using discrete groups of primary particles, flocculi, microflocs, and macroflocs as an approximation of a continuous multimodal PSD.
UR - http://www.scopus.com/inward/record.url?scp=84863360039&partnerID=8YFLogxK
U2 - 10.1029/2011JC007552
DO - 10.1029/2011JC007552
M3 - Article
AN - SCOPUS:84863360039
SN - 2169-9275
VL - 117
JO - Journal of Geophysical Research: Oceans
JF - Journal of Geophysical Research: Oceans
IS - 3
M1 - C03014
ER -