TY - JOUR
T1 - Mycoplasma hyopneumoniae increases intracellular calcium release in porcine ciliated tracheal cells
AU - Park, Seung Chun
AU - Yibchok-Anun, Sirintorn
AU - Cheng, Henrique
AU - Young, Theresa F.
AU - Thacker, Eileen L.
AU - Minion, F. Chris
AU - Ross, Richard F.
AU - Hsu, Walter H.
PY - 2002
Y1 - 2002
N2 - We investigated the effects of intact pathogenic Mycoplasma hyopneumoniae, nonpathogenic M. hyopneumoniae, and Mycoplasma flocculare on intracellular free Ca2+ concentrations ([Ca2+]i) in porcine ciliated tracheal epithelial cells. The ciliated epithelial cells had basal [Ca2+]i of 103 ± 3 nM (n = 217 cells). The [Ca2+]i increased by 250 ± 19 nM (n = 47 cells) from the basal level within 100 s of the addition of pathogenic M. hyopneumoniae strain 91-3 (300 μg/ml), and this increase lasted ∼60 s. In contrast, nonpathogenic M. hyopneumoniae and M. flocculare at concentrations of 300 μg/ml failed to increase [Ca2+]i. In Ca2+-free medium, pathogenic M. hyopneumoniae still increased [Ca2+]i in tracheal cells. Pretreatment with thapsigargin (1 μM for 30 min), which depleted the Ca2+ store in the endoplasmic reticulum, abolished the effect of M. hyoneumoniae. Pretreatment with pertussis toxin (100 ng/ml for 3 h) or U-73122 (2 μM for 100 s), an inhibitor of phospholipase C, also abolished the effect of M. hyopneumoniae. The administration of mastoparan 7, an activator of pertussis toxin-sensitive proteins Gi and Go, increased [Ca2+]i in ciliated tracheal cells. These results suggest that pathogenic M. hyopneumoniae activates receptors that are coupled to Gi or Go, which in turn activates a phospholipase C pathway, thereby releasing Ca2+ from the endoplasmic reticulum. Thus, an increase in Ca2+ may serve as a signal for the pathogenesis of M. hyopneumoniae.
AB - We investigated the effects of intact pathogenic Mycoplasma hyopneumoniae, nonpathogenic M. hyopneumoniae, and Mycoplasma flocculare on intracellular free Ca2+ concentrations ([Ca2+]i) in porcine ciliated tracheal epithelial cells. The ciliated epithelial cells had basal [Ca2+]i of 103 ± 3 nM (n = 217 cells). The [Ca2+]i increased by 250 ± 19 nM (n = 47 cells) from the basal level within 100 s of the addition of pathogenic M. hyopneumoniae strain 91-3 (300 μg/ml), and this increase lasted ∼60 s. In contrast, nonpathogenic M. hyopneumoniae and M. flocculare at concentrations of 300 μg/ml failed to increase [Ca2+]i. In Ca2+-free medium, pathogenic M. hyopneumoniae still increased [Ca2+]i in tracheal cells. Pretreatment with thapsigargin (1 μM for 30 min), which depleted the Ca2+ store in the endoplasmic reticulum, abolished the effect of M. hyoneumoniae. Pretreatment with pertussis toxin (100 ng/ml for 3 h) or U-73122 (2 μM for 100 s), an inhibitor of phospholipase C, also abolished the effect of M. hyopneumoniae. The administration of mastoparan 7, an activator of pertussis toxin-sensitive proteins Gi and Go, increased [Ca2+]i in ciliated tracheal cells. These results suggest that pathogenic M. hyopneumoniae activates receptors that are coupled to Gi or Go, which in turn activates a phospholipase C pathway, thereby releasing Ca2+ from the endoplasmic reticulum. Thus, an increase in Ca2+ may serve as a signal for the pathogenesis of M. hyopneumoniae.
UR - http://www.scopus.com/inward/record.url?scp=0036117901&partnerID=8YFLogxK
U2 - 10.1128/IAI.70.5.2502-2506.2002
DO - 10.1128/IAI.70.5.2502-2506.2002
M3 - Article
C2 - 11953388
AN - SCOPUS:0036117901
SN - 0019-9567
VL - 70
SP - 2502
EP - 2506
JO - Infection and Immunity
JF - Infection and Immunity
IS - 5
ER -