Abstract
Let n ≥ 2 and L(n E: E) denote the space of all continuous n-linear mappings from a Banach space E to itself. Let NA(L(n E: E)) denote the set of all norm attaining n-linear mappings in L(n E: E) and NRA(L(n E: E)) denote the set of all numerical radius attaining n-linear mappings in L(n E: E). In this paper we show that NA(L(n E: E))=NRA(L(n E: E)) if E = l1. We also characterize NA(L(n l1: l1)).
Original language | English |
---|---|
Pages (from-to) | 769-775 |
Number of pages | 7 |
Journal | Acta Scientiarum Mathematicarum |
Volume | 88 |
Issue number | 3-4 |
DOIs | |
State | Published - Dec 2022 |
Keywords
- norm attaining multilinear mappings
- numerical radius attaining multilinear mappings