Abstract
This study investigated the effect of naringin, a major flavonoid in grapefruit and citrus fruits, on the degeneration of the nigrostriatal dopaminergic (DA) projection in a neurotoxin model of Parkinson's disease (PD) in vivo and the potential underlying mechanisms focusing on the induction of glia-derived neurotrophic factor (GDNF), well known as an important neurotrophic factor involved in the survival of adult DA neurons. 1-Methyl-4-phenylpyridinium (MPP+) was unilaterally injected into the medial forebrain bundle of rat brains for a neurotoxin model of PD in the presence or absence of naringin by daily intraperitoneal injection. To ascertain whether naringin-induced GDNF contributes to neuroprotection, we further investigated the effects of intranigral injection of neutralizing antibodies against GDNF in the MPP+ rat model of PD. Our observations demonstrate that naringin could increase the level of GDNF in DA neurons, contributing to neuroprotection in the MPP+ rat model of PD, with activation of mammalian target of rapamycin complex 1. Moreover, naringin could attenuate the level of tumor necrosis factor-α in microglia increased by MPP+-induced neurotoxicity in the substantia nigra. These results indicate that naringin could impart to DA neurons the important ability to produce GDNF as a therapeutic agent against PD with anti-inflammatory effects, suggesting that naringin is a beneficial natural product for the prevention of DA degeneration in the adult brain.
Original language | English |
---|---|
Pages (from-to) | 801-806 |
Number of pages | 6 |
Journal | Journal of Nutritional Biochemistry |
Volume | 25 |
Issue number | 7 |
DOIs | |
State | Published - Jul 2014 |
Keywords
- 1-Methyl-4-phenylpyridinium
- GDNF
- Naringin
- Neuroprotection
- Parkinson's disease