Nitrogen-Doped Porous Carbons from Ionic Liquids@MOF: Remarkable Adsorbents for Both Aqueous and Nonaqueous Media

Imteaz Ahmed, Tandra Panja, Nazmul Abedin Khan, Mithun Sarker, Jong Sung Yu, Sung Hwa Jhung

Research output: Contribution to journalArticlepeer-review

148 Scopus citations

Abstract

Porous carbons were prepared from a metal-organic framework (MOF, named ZIF-8), with or without modification, via high-temperature pyrolysis. Porous carbons with high nitrogen content were obtained from the calcination of MOF after introducing an ionic liquid (IL) (IL@MOF) via the ship-in-bottle method. The MOF-derived carbons (MDCs) and IL@MOF-derived carbons (IMDCs) were characterized using various techniques and used for liquid-phase adsorptions in both water and hydrocarbon to understand the possible applications in purification of water and fuel, respectively. Adsorptive performances for the removal of organic contaminants, atrazine (ATZ), diuron, and diclofenac, were remarkably enhanced with the modification/conversion of MOFs to MDC and IMDC. For example, in the case of ATZ adsorption, the maximum adsorption capacity of IMDC (Q0 = 208 m2/g) was much higher than that of activated carbon (AC, Q0 = 60 m2/g) and MDC (Q0 = 168 m2/g) and was found to be the highest among the reported results so far. The results of adsorptive denitrogenation and desulfurization of fuel were similar to that of water purification. The IMDCs are very useful in the adsorptions since these new carbons showed remarkable performances in both the aqueous and nonaqueous phases. These results are very meaningful because hydrophobic and hydrophilic adsorbents are usually required for the adsorptions in the water and fuel phases, respectively. Moreover, a plausible mechanism, H-bonding, was also suggested to explain the remarkable performance of the IMDCs in the adsorptions. Therefore, the IMDCs derived from IL@MOF might have various applications, especially in adsorptions, based on high porosity, mesoporosity, doped nitrogen, and functional groups.

Original languageEnglish
Pages (from-to)10276-10285
Number of pages10
JournalACS applied materials & interfaces
Volume9
Issue number11
DOIs
StatePublished - 22 Mar 2017

Keywords

  • H-bonding
  • liquid phase adsorption
  • metal−organic frameworks
  • MOF-derived carbons
  • nitrogen doping
  • pyrolysis of MOFs

Fingerprint

Dive into the research topics of 'Nitrogen-Doped Porous Carbons from Ionic Liquids@MOF: Remarkable Adsorbents for Both Aqueous and Nonaqueous Media'. Together they form a unique fingerprint.

Cite this