TY - JOUR
T1 - Norm attaining bilinear forms of L(2d∗(1,w)2) at given vectors
AU - Kim, Sung Guen
N1 - Publisher Copyright:
© S. G. KIM, 2023.
PY - 2023
Y1 - 2023
N2 - For given unit vectors x1,···,xn of a real Banach space E, we de ne NA(L(nE))(x1, · · ·, xn) = {T ∈ L(nE): |T(x1, · · ·, xn)| = kT k = 1}, where L(nE) denotes the Banach space of all continuous n-linear forms on E endowed with the norm kT k = supkxkk=1,1≤k≤n |T(x1,..., xn)|.
AB - For given unit vectors x1,···,xn of a real Banach space E, we de ne NA(L(nE))(x1, · · ·, xn) = {T ∈ L(nE): |T(x1, · · ·, xn)| = kT k = 1}, where L(nE) denotes the Banach space of all continuous n-linear forms on E endowed with the norm kT k = supkxkk=1,1≤k≤n |T(x1,..., xn)|.
KW - norm attaining bilinear forms
KW - the plane with an octagonal norm
UR - http://www.scopus.com/inward/record.url?scp=85181035280&partnerID=8YFLogxK
U2 - 10.15421/242313
DO - 10.15421/242313
M3 - Article
AN - SCOPUS:85181035280
SN - 2664-4991
VL - 31
SP - 36
EP - 48
JO - Researches in Mathematics
JF - Researches in Mathematics
IS - 2
ER -