TY - JOUR
T1 - Norm attaining bilinear forms on the plane with the l1-norm
AU - Kim, Sung Guen
N1 - Publisher Copyright:
© 2022 Sciendo. All rights reserved.
PY - 2022/11/1
Y1 - 2022/11/1
N2 - For given unit vectors x1, · · ·, xnof a real Banach space E, we define 'Equation Presented', where l(nE) denotes the Banach space of all continuous n-linear forms on E endowed with the norm ||T|| = sup ||xk||=1,1≤k≤n |T(x1,⋯, xn)|. In this paper, we classify NA(L(2l21))((x1; x2); (y1; y2)) for unit vectors (x1; x2); (y1; y2) ∈ l21; where l21= ℝ2with the l1-norm.
AB - For given unit vectors x1, · · ·, xnof a real Banach space E, we define 'Equation Presented', where l(nE) denotes the Banach space of all continuous n-linear forms on E endowed with the norm ||T|| = sup ||xk||=1,1≤k≤n |T(x1,⋯, xn)|. In this paper, we classify NA(L(2l21))((x1; x2); (y1; y2)) for unit vectors (x1; x2); (y1; y2) ∈ l21; where l21= ℝ2with the l1-norm.
KW - norm attaining bilinear forms
UR - https://www.scopus.com/pages/publications/85143065382
U2 - 10.2478/ausm-2022-0008
DO - 10.2478/ausm-2022-0008
M3 - Article
AN - SCOPUS:85143065382
SN - 1844-6094
VL - 14
SP - 115
EP - 124
JO - Acta Universitatis Sapientiae, Mathematica
JF - Acta Universitatis Sapientiae, Mathematica
IS - 1
ER -