Normalized cross-correlations of solar cycle and physical characteristics of cloud

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

We explore the associations between the total sunspot area, solar north-south asymmetry, and Southern Oscillation Index and the physical characteristics of clouds by calculating normalized cross-correlations, motivated by the idea that the galactic cosmic ray influx modulated by solar activity may cause changes in cloud coverage, and in turn the Earth's climate. Unlike previous studies based on the relative difference, we have employed cloud data as a whole time-series without detrending. We found that the coverage of high-level and low-level cloud is at a maximum when the solar north-south asymmetry is close to the minimum, and one or two years after the solar north-south asymmetry is at a maximum, respectively. The global surface air temperature is at a maximum five years after the solar north-south asymmetry is at a maximum, and the optical depth is at a minimum when the solar north-south asymmetry is at a maximum. We also found that during the descending period of solar activity, the coverage of low-level cloud is at a maximum, and global surface air temperature and cloud optical depth are at a minimum, and that the total column water vapor is at a maximum one or two years after the solar maximum.

Original languageEnglish
Pages (from-to)225-234
Number of pages10
JournalJournal of Astronomy and Space Sciences
Volume36
Issue number4
DOIs
StatePublished - 1 Dec 2019

Keywords

  • Data analysis
  • Solar activity
  • Terrestrial climate

Fingerprint

Dive into the research topics of 'Normalized cross-correlations of solar cycle and physical characteristics of cloud'. Together they form a unique fingerprint.

Cite this