TY - JOUR
T1 - Normalized digital surface model extraction and slope parameter determination through region growing of UAV data
AU - Yeom, Junho
AU - Lee, Wonhee
AU - Kim, Taeheon
AU - Han, Youkyung
N1 - Publisher Copyright:
© 2019 Korean Society of Surveying. All rights reserved.
PY - 2019
Y1 - 2019
N2 - NDSM (Normalized Digital Surface Model) is key information for the detailed analysis of remote sensing data. Although NDSM can be simply obtained by subtracting a DTM (Digital Terrain Model) from a DSM (Digital Surface Model), in case of UAV (Unmanned Aerial Vehicle) data, it is difficult to get an accurate DTM due to high resolution characteristics of UAV data containing a large number of complex objects on the ground such as vegetation and urban structures. In this study, RGB-based UAV vegetation index, ExG (Excess Green) was used to extract initial seed points having low ExG values for region growing such that a DTM can be generated cost-effectively based on high resolution UAV data. For this process, local window analysis was applied to resolve the problem of erroneous seed point extraction from local low ExG points. Using the DSM values of seed points, region growing was applied to merge neighboring terrain pixels. Slope criteria were adopted for the region growing process and the seed points were determined as terrain points in case the size of segments is larger than 0.25 m2. Various slope criteria were tested to derive the optimized value for UAV data-based NDSM generation. Finally, the extracted terrain points were evaluated and interpolation was performed using the terrain points to generate an NDSM. The proposed method was applied to agricultural area in order to extract the above ground heights of crops and check feasibility of agricultural monitoring.
AB - NDSM (Normalized Digital Surface Model) is key information for the detailed analysis of remote sensing data. Although NDSM can be simply obtained by subtracting a DTM (Digital Terrain Model) from a DSM (Digital Surface Model), in case of UAV (Unmanned Aerial Vehicle) data, it is difficult to get an accurate DTM due to high resolution characteristics of UAV data containing a large number of complex objects on the ground such as vegetation and urban structures. In this study, RGB-based UAV vegetation index, ExG (Excess Green) was used to extract initial seed points having low ExG values for region growing such that a DTM can be generated cost-effectively based on high resolution UAV data. For this process, local window analysis was applied to resolve the problem of erroneous seed point extraction from local low ExG points. Using the DSM values of seed points, region growing was applied to merge neighboring terrain pixels. Slope criteria were adopted for the region growing process and the seed points were determined as terrain points in case the size of segments is larger than 0.25 m2. Various slope criteria were tested to derive the optimized value for UAV data-based NDSM generation. Finally, the extracted terrain points were evaluated and interpolation was performed using the terrain points to generate an NDSM. The proposed method was applied to agricultural area in order to extract the above ground heights of crops and check feasibility of agricultural monitoring.
KW - ExG
KW - Local Window Analysis
KW - Normalized Digital Surface Model
KW - Region growing
KW - Slope Parameter
KW - UAV
UR - http://www.scopus.com/inward/record.url?scp=85078486720&partnerID=8YFLogxK
U2 - 10.7848/ksgpc.2019.37.6.499
DO - 10.7848/ksgpc.2019.37.6.499
M3 - Article
AN - SCOPUS:85078486720
SN - 1598-4850
VL - 37
SP - 499
EP - 506
JO - Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
JF - Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
IS - 6
ER -