TY - JOUR
T1 - NTRK1 fusion in glioblastoma multiforme
AU - Kim, Jinkuk
AU - Lee, Yeri
AU - Cho, Hee Jin
AU - Lee, Young Eun
AU - An, Jaeyeol
AU - Cho, Gye Hyun
AU - Ko, Young Hyeh
AU - Joo, Kyeung Min
AU - Nam, Do Hyun
PY - 2014/3/19
Y1 - 2014/3/19
N2 - Glioblastoma multiforme (GBM) is the most aggressive form of brain tumor, yet with no targeted therapy with substantial survival benefit. Recent studies on solid tumors showed that fusion genes often play driver roles and are promising targets for pharmaceutical intervention. To survey potential fusion genes in GBMs, we analysed RNA-Seq data from 162 GBM patients available through The Cancer Genome Atlas (TCGA), and found that 39 exons of neurotrophic tyrosine kinase receptor type 1 (NTRK1, encoding TrkA) are fused to 5́ exons of the genes that are highly expressed in neuronal tissues, neurofascin (NFASC) and brevican (BCAN). The fusions preserved both the transmembrane and kinase domains of NTRK1 in frame. NTRK1 is a mediator of the pro-survival signaling of nerve growth factor (NGF) and is a known oncogene, found commonly altered in human cancer. While GBMs largely lacked NTRK1 expression, the fusion-positive GBMs expressed fusion transcripts in high abundance, and showed elevated NTRK1-pathway activity. Lentiviral transduction of the NFASC-NTRK1 fusion gene in NIH 3T3 cells increased proliferation in vitro, colony formation in soft agar, and tumor formation in mice, suggesting the possibility that the fusion contributed to the initiation or maintenance of the fusion-positive GBMs, and therefore may be a rational drug target.
AB - Glioblastoma multiforme (GBM) is the most aggressive form of brain tumor, yet with no targeted therapy with substantial survival benefit. Recent studies on solid tumors showed that fusion genes often play driver roles and are promising targets for pharmaceutical intervention. To survey potential fusion genes in GBMs, we analysed RNA-Seq data from 162 GBM patients available through The Cancer Genome Atlas (TCGA), and found that 39 exons of neurotrophic tyrosine kinase receptor type 1 (NTRK1, encoding TrkA) are fused to 5́ exons of the genes that are highly expressed in neuronal tissues, neurofascin (NFASC) and brevican (BCAN). The fusions preserved both the transmembrane and kinase domains of NTRK1 in frame. NTRK1 is a mediator of the pro-survival signaling of nerve growth factor (NGF) and is a known oncogene, found commonly altered in human cancer. While GBMs largely lacked NTRK1 expression, the fusion-positive GBMs expressed fusion transcripts in high abundance, and showed elevated NTRK1-pathway activity. Lentiviral transduction of the NFASC-NTRK1 fusion gene in NIH 3T3 cells increased proliferation in vitro, colony formation in soft agar, and tumor formation in mice, suggesting the possibility that the fusion contributed to the initiation or maintenance of the fusion-positive GBMs, and therefore may be a rational drug target.
UR - http://www.scopus.com/inward/record.url?scp=84898657475&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0091940
DO - 10.1371/journal.pone.0091940
M3 - Article
C2 - 24647444
AN - SCOPUS:84898657475
SN - 1932-6203
VL - 9
JO - PLoS ONE
JF - PLoS ONE
IS - 3
M1 - e91940
ER -