Nuclear Translocation of CAM-Associated Protein Activates Transcription for Long-Term Facilitation in Aplysia

Seung Hee Lee, Chae Seok Lim, Hyungju Park, Jin A. Lee, Jin Hee Han, Hyoung Kim, Ye Hwang Cheang, Sue Hyun Lee, Yong Seok Lee, Hyoung Gon Ko, Dong Hyuk Jang, Hyongkyu Kim, Maria C. Miniaci, Dusan Bartsch, Eunjoon Kim, Craig H. Bailey, Eric R. Kandel, Bong Kiun Kaang

Research output: Contribution to journalArticlepeer-review

47 Scopus citations

Abstract

Repeated pulses of serotonin (5-HT) induce long-term facilitation (LTF) of the synapses between sensory and motor neurons of the gill-withdrawal reflex in Aplysia. To explore how apCAM downregulation at the plasma membrane and CREB-mediated transcription in the nucleus, both of which are required for the formation of LTF, might relate to each other, we cloned an apCAM-associated protein (CAMAP) by yeast two-hybrid screening. We found that 5-HT signaling at the synapse activates PKA which in turn phosphorylates CAMAP to induce the dissociation of CAMAP from apCAM and the subsequent translocation of CAMAP into the nucleus of sensory neurons. In the nucleus, CAMAP acts as a transcriptional coactivator for CREB1 and is essential for the activation of ApC/EBP required for the initiation of LTF. Combined, our data suggest that CAMAP is a retrograde signaling component that translocates from activated synapses to the nucleus during synapse-specific LTF.

Original languageEnglish
Pages (from-to)801-812
Number of pages12
JournalCell
Volume129
Issue number4
DOIs
StatePublished - 18 May 2007

Keywords

  • MOLNEURO

Fingerprint

Dive into the research topics of 'Nuclear Translocation of CAM-Associated Protein Activates Transcription for Long-Term Facilitation in Aplysia'. Together they form a unique fingerprint.

Cite this