NUMERICAL RADIUS POINTS OF A BILINEAR MAPPING FROM THE PLANE WITH THE l1-NORM INTO ITSELF

Research output: Contribution to journalArticlepeer-review

Abstract

For n ≥ 2 and a Banach space E we let Π(E) = {[x, x1, …, xn]: x (xj) = ∥x ∥ = ∥xj ∥ = 1 for j = 1, …, n}. Let L(n E: E) denote the space of all continuous n-linear mappings from E to itself. An element [x, x1, …, xn] ∈Π(E) is called a numerical radius point of T ∈ L(n E: E) if |x (T (x1, …, xn))| = v(T), where v(T) is the numerical radius of T. Nradius(T) denotes the set of all numerical radius points of T. In this paper we classify Nradius(T) for every T ∈ L(2 l12:l21) in connection with Norm(T), where Norm(T) denotes the set of all norming points of T.

Original languageEnglish
Pages (from-to)143-151
Number of pages9
JournalRad Hrvatske Akademije Znanosti i Umjetnosti, Matematicke Znanosti
Volume27
Issue number555
DOIs
StatePublished - 2023

Keywords

  • Numerical radius
  • numerical radius attaining bilinear forms
  • numerical radius points

Fingerprint

Dive into the research topics of 'NUMERICAL RADIUS POINTS OF A BILINEAR MAPPING FROM THE PLANE WITH THE l1-NORM INTO ITSELF'. Together they form a unique fingerprint.

Cite this