TY - JOUR
T1 - NUMERICAL RADIUS POINTS OF A BILINEAR MAPPING FROM THE PLANE WITH THE l1-NORM INTO ITSELF
AU - Kim, Sung Guen
N1 - Publisher Copyright:
© 2023, Croatian Academy of Sciences and Arts. All rights reserved.
PY - 2023
Y1 - 2023
N2 - For n ≥ 2 and a Banach space E we let Π(E) = {[x∗, x1, …, xn]: x∗ (xj) = ∥x∗ ∥ = ∥xj ∥ = 1 for j = 1, …, n}. Let L(n E: E) denote the space of all continuous n-linear mappings from E to itself. An element [x∗, x1, …, xn] ∈Π(E) is called a numerical radius point of T ∈ L(n E: E) if |x∗ (T (x1, …, xn))| = v(T), where v(T) is the numerical radius of T. Nradius(T) denotes the set of all numerical radius points of T. In this paper we classify Nradius(T) for every T ∈ L(2 l12:l21) in connection with Norm(T), where Norm(T) denotes the set of all norming points of T.
AB - For n ≥ 2 and a Banach space E we let Π(E) = {[x∗, x1, …, xn]: x∗ (xj) = ∥x∗ ∥ = ∥xj ∥ = 1 for j = 1, …, n}. Let L(n E: E) denote the space of all continuous n-linear mappings from E to itself. An element [x∗, x1, …, xn] ∈Π(E) is called a numerical radius point of T ∈ L(n E: E) if |x∗ (T (x1, …, xn))| = v(T), where v(T) is the numerical radius of T. Nradius(T) denotes the set of all numerical radius points of T. In this paper we classify Nradius(T) for every T ∈ L(2 l12:l21) in connection with Norm(T), where Norm(T) denotes the set of all norming points of T.
KW - Numerical radius
KW - numerical radius attaining bilinear forms
KW - numerical radius points
UR - http://www.scopus.com/inward/record.url?scp=85169313708&partnerID=8YFLogxK
U2 - 10.21857/y7v64tvgly
DO - 10.21857/y7v64tvgly
M3 - Article
AN - SCOPUS:85169313708
SN - 1845-4100
VL - 27
SP - 143
EP - 151
JO - Rad Hrvatske Akademije Znanosti i Umjetnosti, Matematicke Znanosti
JF - Rad Hrvatske Akademije Znanosti i Umjetnosti, Matematicke Znanosti
IS - 555
ER -