Numerical study of turbulent flow and heat transfer in a convex channel of a calorimetric rocket chamber

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

Turbulent flows and related heat transfer in a convex channel of a calorimetric rocket chamber are investigated by the nonlinear k-ε-f μ model of Park et al. and large-eddy simulation (LES). In order to analyze the geometric effects on heat transfer, several radii of surface curvature 0.067 ≤ D/R ≤ 0.4 and nozzle-to-surface distances 0.5 ≤ H/D ≤ 1.5 are selected for five Reynolds numbers (5,000 ≤ ReD ≤ 75,000). Comparing with the LES results for an impinging jet flow along the convex surface, the nonlinear k-ε-fμ model shows some discrepancies. However, the model performance is sufficient to utilize for the investigation of parametric effects. The LES results showed the detailed description of vortical structures responsible for the production of turbulent kinetic energy. In addition, the characteristics of turbulent heat transfer under various conditions of convex channels are investigated by using the nonlinear k-ε-fμ model. Finally, the geometric effects on the local heat transfer and the Reynolds number dependence are scrutinized.

Original languageEnglish
Pages (from-to)1029-1047
Number of pages19
JournalNumerical Heat Transfer; Part A: Applications
Volume45
Issue number10
DOIs
StatePublished - 18 Jun 2004

Fingerprint

Dive into the research topics of 'Numerical study of turbulent flow and heat transfer in a convex channel of a calorimetric rocket chamber'. Together they form a unique fingerprint.

Cite this