TY - JOUR
T1 - Numerical study on heat and mass transfer in hygroscopic rotor during sorption process
AU - Shin, Hyun Geun
AU - Park, Il Seouk
N1 - Publisher Copyright:
© 2016, Springer-Verlag Berlin Heidelberg.
PY - 2017/2/1
Y1 - 2017/2/1
N2 - Recently, interest in hygroscopic dehumidifiers has rapidly increased in the indoor environment industry because of their potential contribution to the development of hybrid (refrigerating + hygroscopic) dehumidifiers. Heat and mass transport phenomena such as adsorption and desorption, and their complex interactions occur in a desiccant rotor, which comprises many small hygroscopic channels. This study numerically investigated the conjugated heat and mass transfers in a channel modeled with the flow and porous desiccant regions, where only ordinary and surface diffusions (excluding Knudsen diffusion) during the sorption processes were considered. The change in the dehumidification performance depending on operating conditions such as the rotor’s rotating speed, air flow rate, and adsorption–desorption ratio, was examined under various working environments. The temporal and spatial variations in the temperature, vapor mass fraction, and liquid water mass fraction in the channel were considered in detail. The closely linked heat and mass transports were clarified for a better understanding of the sorption processes in the desiccant rotor.
AB - Recently, interest in hygroscopic dehumidifiers has rapidly increased in the indoor environment industry because of their potential contribution to the development of hybrid (refrigerating + hygroscopic) dehumidifiers. Heat and mass transport phenomena such as adsorption and desorption, and their complex interactions occur in a desiccant rotor, which comprises many small hygroscopic channels. This study numerically investigated the conjugated heat and mass transfers in a channel modeled with the flow and porous desiccant regions, where only ordinary and surface diffusions (excluding Knudsen diffusion) during the sorption processes were considered. The change in the dehumidification performance depending on operating conditions such as the rotor’s rotating speed, air flow rate, and adsorption–desorption ratio, was examined under various working environments. The temporal and spatial variations in the temperature, vapor mass fraction, and liquid water mass fraction in the channel were considered in detail. The closely linked heat and mass transports were clarified for a better understanding of the sorption processes in the desiccant rotor.
UR - http://www.scopus.com/inward/record.url?scp=85010082125&partnerID=8YFLogxK
U2 - 10.1007/s00231-016-1843-0
DO - 10.1007/s00231-016-1843-0
M3 - Article
AN - SCOPUS:85010082125
SN - 0947-7411
VL - 53
SP - 591
EP - 609
JO - Heat and Mass Transfer
JF - Heat and Mass Transfer
IS - 2
ER -