On-chip Escherichia coli culture, purification, and detection of expressed proteins

Moonil Kim, So Young Lee, Hyunju Choi, Yong Beom Shin, Sun Ok Jung, Min Gon Kim, Bong Hyun Chung

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

In a recent study, we reported the results of a rapid high-throughput expression analysis of the affinity-tagged proteins present in total cell lysates, using a surface plasmon resonance (SPR) imaging protein chip system. In this paper, we describe a novel method, which is able to sequentially carry out a recombinant Escherichia coli culture, as well as the detection and purification of the expressed proteins on a single microwell chip, fabricated on a two-dimensional thin gold film. Following the induction of the protein on the microwell chip, the E. coli cells were lysed on the chip via the addition of lysozymes, and the expressed glutathione S-transferase-fused green fluorescent protein (GST-GFP) was then purified on the chip via affinity interaction with the glutathionylated gold surface of the chip. Finally, the expressed protein was directly detected using the surface plasmon resonance (SPR) imaging system. This system saves a substantial amount of time, experimental resources, and labor, by allowing for the complicated and labor-intensive procedures inherent to the production of recombinant proteins to be conducted on a single microwell chip, simply and economically.

Original languageEnglish
Pages (from-to)655-662
Number of pages8
JournalEuropean Biophysics Journal
Volume35
Issue number8
DOIs
StatePublished - Oct 2006

Keywords

  • Glutathione S-transferase-fused green fluorescent protein (GST-GFP)
  • Microwell chip
  • On-chip purification
  • Surface plasmon resonance (SPR) imaging system

Fingerprint

Dive into the research topics of 'On-chip Escherichia coli culture, purification, and detection of expressed proteins'. Together they form a unique fingerprint.

Cite this