Abstract
Let D be an integral domain, S be a (not necessarily saturated) multiplicative subset of D, w be the so-called w-operation on D, and M be a unitary D-module. As generalizations of strong Mori domains (respectively, UFDs) and strong Mori modules, we define D to be an S-strong Mori domain (respectively, S-factorial domain) if for each nonzero ideal I of D, there exist an s ∈ S and a w-finite type (respectively, principal) ideal J of D such that sI⊆J⊆Iw; and M to be an S-strong Mori module if M is a w-module and for each nonzero submodule N of M, there exist an s ∈ S and a w-finite type submodule F of N such that sN⊆F⊆Nw. This paper presents some properties of S-strong Mori domains, S-factorial domains and S-strong Mori modules.
Original language | English |
---|---|
Pages (from-to) | 314-332 |
Number of pages | 19 |
Journal | Journal of Algebra |
Volume | 416 |
DOIs | |
State | Published - 15 Oct 2014 |
Keywords
- Krull domain
- S-factorial domain
- S-strong Mori domain
- S-strong Mori module
- S-w-finite
- S-w-principal