TY - JOUR
T1 - Opportunistic Screening for Acute Vertebral Fractures on a Routine Abdominal or Chest Computed Tomography Scans Using an Automated Deep Learning Model
AU - Kim, Ye Rin
AU - Yoon, Yu Sung
AU - Cha, Jang Gyu
N1 - Publisher Copyright:
© 2024 by the authors.
PY - 2024/4
Y1 - 2024/4
N2 - Objectives: To develop an opportunistic screening model based on a deep learning algorithm to detect recent vertebral fractures in abdominal or chest CTs. Materials and Methods: A total of 1309 coronal reformatted images (504 with a recent fracture from 119 patients, and 805 without fracture from 115 patients), from torso CTs, performed from September 2018 to April 2022, on patients who also had a spine MRI within two months, were included. Two readers participated in image selection and manually labeled the fractured segment on each selected image with Neuro-T (version 2.3.3; Neurocle Inc.) software. We split the images randomly into the training and internal test set (labeled: unlabeled = 480:700) and the secondary interval validation set (24:105). For the observer study, three radiologists reviewed the CT images in the external test set with and without deep learning assistance and scored the likelihood of an acute fracture in each image independently. Results: For the training and internal test sets, the AI achieved a 99.86% test accuracy, 91.22% precision, and 89.18% F1 score for detection of recent fracture. Then, in the secondary internal validation set, it achieved 99.90%, 74.93%, and 78.30%, respectively. In the observer study, with the assistance of the deep learning algorithm, a significant improvement was observed in the radiology resident’s accuracy, from 92.79% to 98.2% (p = 0.04). Conclusion: The model showed a high level of accuracy in the test set and also the internal validation set. If this algorithm is applied opportunistically to daily torso CT evaluation, it will be helpful for the early detection of fractures that require treatment.
AB - Objectives: To develop an opportunistic screening model based on a deep learning algorithm to detect recent vertebral fractures in abdominal or chest CTs. Materials and Methods: A total of 1309 coronal reformatted images (504 with a recent fracture from 119 patients, and 805 without fracture from 115 patients), from torso CTs, performed from September 2018 to April 2022, on patients who also had a spine MRI within two months, were included. Two readers participated in image selection and manually labeled the fractured segment on each selected image with Neuro-T (version 2.3.3; Neurocle Inc.) software. We split the images randomly into the training and internal test set (labeled: unlabeled = 480:700) and the secondary interval validation set (24:105). For the observer study, three radiologists reviewed the CT images in the external test set with and without deep learning assistance and scored the likelihood of an acute fracture in each image independently. Results: For the training and internal test sets, the AI achieved a 99.86% test accuracy, 91.22% precision, and 89.18% F1 score for detection of recent fracture. Then, in the secondary internal validation set, it achieved 99.90%, 74.93%, and 78.30%, respectively. In the observer study, with the assistance of the deep learning algorithm, a significant improvement was observed in the radiology resident’s accuracy, from 92.79% to 98.2% (p = 0.04). Conclusion: The model showed a high level of accuracy in the test set and also the internal validation set. If this algorithm is applied opportunistically to daily torso CT evaluation, it will be helpful for the early detection of fractures that require treatment.
KW - artificial intelligence
KW - computed tomography
KW - deep learning
KW - spine
KW - vertebral compression fracture
UR - http://www.scopus.com/inward/record.url?scp=85190140450&partnerID=8YFLogxK
U2 - 10.3390/diagnostics14070781
DO - 10.3390/diagnostics14070781
M3 - Article
AN - SCOPUS:85190140450
SN - 2075-4418
VL - 14
JO - Diagnostics
JF - Diagnostics
IS - 7
M1 - 781
ER -