TY - JOUR
T1 - Organic and elemental carbon measurements during ACE-Asia suggest a longer atmospheric lifetime for elemental carbon
AU - Lim, H. J.
AU - Turpin, B. J.
AU - Russell, L. M.
AU - Bates, T. S.
PY - 2003/7/15
Y1 - 2003/7/15
N2 - During the ACE-Asia intensive field campaign (March 14-April 20, 2001), PM1.0 organic (OC) and elemental carbon (EC) concentrations were measured onboard the NOAA R/V Ronald H. Brown over the Northwest Pacific Ocean using a semi-continuous automated carbon analyzer downstream of a carbon-impregnated filter denuder. This OC and EC measurement achieved a mean time resolution of about 200 min over the Pacific Ocean, substantially lower than that achieved previously (24 h). The semi-continuous measurements, in which the adsorption artifact was substantially reduced using the denuder, showed good agreement with integrated artifact-corrected measurements made without a denuder. Mean particulate OC and EC concentrations were 0.21 and 0.09, 0.70 and 0.29, 1.00 and 0.27, and 2.43 and 0.66 μg of C m-3 over the background Pacific Ocean, Asian-influenced Pacific Ocean, offshore of Japan, and Sea of Japan, respectively. On April 11, 90-min average OC and EC concentrations peaked at 4.0 and 1.3 μg of C m-3, respectively, offshore of Korea over the Sea of Japan. The OC/EC ratio of 3.7 over the Sea of Japan and offshore of Japan was substantially higher than that of 2.5 over the Asian-influenced Pacific Ocean, even though backward air mass trajectories put the "Asian-influenced Pacific Ocean" sample downwind. The OC/EC ratio decreased with increasing time since the air mass encountered the source regions of China, Japan, and Korea. This suggests a longer atmospheric residence time for EC than for OC.
AB - During the ACE-Asia intensive field campaign (March 14-April 20, 2001), PM1.0 organic (OC) and elemental carbon (EC) concentrations were measured onboard the NOAA R/V Ronald H. Brown over the Northwest Pacific Ocean using a semi-continuous automated carbon analyzer downstream of a carbon-impregnated filter denuder. This OC and EC measurement achieved a mean time resolution of about 200 min over the Pacific Ocean, substantially lower than that achieved previously (24 h). The semi-continuous measurements, in which the adsorption artifact was substantially reduced using the denuder, showed good agreement with integrated artifact-corrected measurements made without a denuder. Mean particulate OC and EC concentrations were 0.21 and 0.09, 0.70 and 0.29, 1.00 and 0.27, and 2.43 and 0.66 μg of C m-3 over the background Pacific Ocean, Asian-influenced Pacific Ocean, offshore of Japan, and Sea of Japan, respectively. On April 11, 90-min average OC and EC concentrations peaked at 4.0 and 1.3 μg of C m-3, respectively, offshore of Korea over the Sea of Japan. The OC/EC ratio of 3.7 over the Sea of Japan and offshore of Japan was substantially higher than that of 2.5 over the Asian-influenced Pacific Ocean, even though backward air mass trajectories put the "Asian-influenced Pacific Ocean" sample downwind. The OC/EC ratio decreased with increasing time since the air mass encountered the source regions of China, Japan, and Korea. This suggests a longer atmospheric residence time for EC than for OC.
UR - http://www.scopus.com/inward/record.url?scp=0037781940&partnerID=8YFLogxK
U2 - 10.1021/es020988s
DO - 10.1021/es020988s
M3 - Article
C2 - 12901650
AN - SCOPUS:0037781940
SN - 0013-936X
VL - 37
SP - 3055
EP - 3061
JO - Environmental Science and Technology
JF - Environmental Science and Technology
IS - 14
ER -