TY - JOUR
T1 - Overexpression of rosea1 from snapdragon enhances anthocyanin accumulation and abiotic stress tolerance in transgenic tobacco
AU - Naing, Aung H.
AU - Ai, Trinh N.
AU - Lim, Ki B.
AU - Lee, In J.
AU - Kim, Chang K.
N1 - Publisher Copyright:
© 2018 Naing, Ai, Lim, Lee and Kim.
PY - 2018/8/15
Y1 - 2018/8/15
N2 - The co-expression of Rosea1 (Ros1) and Delila (Del) regulates anthocyanin levels in snapdragon flowers, as well as in tomato, petunia, and tobacco. However, there is little information on how Ros1 expression alone controls anthocyanin regulation and whether it is involved in the mechanism that leads to abiotic stress tolerance. In the present study, tobacco (Nicotiana tabacum ‘Xanthi’) transgenic plants overexpressing Ros1 (T2-Ros1-1, T2-Ros1-2, T2-Ros1-3, and T2-Ros1-4) promoted accumulation of anthocyanin in leaves and flowers by elevating the transcription of all key genes involved in the biosynthesis of this pigment. This promotion largely occurred through the upregulation of dihydroflavonol 4-reductase (DFR), and anthocyanidin synthase genes in leaves and upregulation of DFR in flowers. Under normal conditions, the transgenic lines and wild type (WT) plants showed well-developed broad leaves and regular roots, whereas a reduction in plant growth was observed under cold and drought stresses. However, the transgenic T2-Ros1 lines were able to tolerate the stresses better than the WT line by inducing reactive oxygen species scavenging activities, and the expression of antioxidant-related and stress-responsive genes. In addition, phylogenetic analysis clustered Ros1 with many transcription factors (TFs) that confer tolerance to different abiotic stresses. Overall, the results obtained here suggest that Ros1 overexpression upregulates anthocyanin biosynthetic, antioxidant-related, and stress-responsive genes thereby enhancing anthocyanin accumulation and abiotic stress tolerance.
AB - The co-expression of Rosea1 (Ros1) and Delila (Del) regulates anthocyanin levels in snapdragon flowers, as well as in tomato, petunia, and tobacco. However, there is little information on how Ros1 expression alone controls anthocyanin regulation and whether it is involved in the mechanism that leads to abiotic stress tolerance. In the present study, tobacco (Nicotiana tabacum ‘Xanthi’) transgenic plants overexpressing Ros1 (T2-Ros1-1, T2-Ros1-2, T2-Ros1-3, and T2-Ros1-4) promoted accumulation of anthocyanin in leaves and flowers by elevating the transcription of all key genes involved in the biosynthesis of this pigment. This promotion largely occurred through the upregulation of dihydroflavonol 4-reductase (DFR), and anthocyanidin synthase genes in leaves and upregulation of DFR in flowers. Under normal conditions, the transgenic lines and wild type (WT) plants showed well-developed broad leaves and regular roots, whereas a reduction in plant growth was observed under cold and drought stresses. However, the transgenic T2-Ros1 lines were able to tolerate the stresses better than the WT line by inducing reactive oxygen species scavenging activities, and the expression of antioxidant-related and stress-responsive genes. In addition, phylogenetic analysis clustered Ros1 with many transcription factors (TFs) that confer tolerance to different abiotic stresses. Overall, the results obtained here suggest that Ros1 overexpression upregulates anthocyanin biosynthetic, antioxidant-related, and stress-responsive genes thereby enhancing anthocyanin accumulation and abiotic stress tolerance.
KW - Anthocyanin
KW - Cold stress
KW - Drought stress
KW - Gene expression
KW - Phylogenetic analysis
KW - Reactive oxygen species scavenging
KW - Stress tolerance
UR - https://www.scopus.com/pages/publications/85054531182
U2 - 10.3389/fpls.2018.01070
DO - 10.3389/fpls.2018.01070
M3 - Article
AN - SCOPUS:85054531182
SN - 1664-462X
VL - 9
JO - Frontiers in Plant Science
JF - Frontiers in Plant Science
M1 - 1070
ER -