Overexpression of transmembrane TNFα in brain endothelial cells induces schizophrenia-relevant behaviors

In Jun Yeo, Jaesuk Yun, Dong Ju Son, Sang Bae Han, Maree J. Webster, Jin Tae Hong, Sanghyeon Kim

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

Upregulation of genes and coexpression networks related to immune function and inflammation have been repeatedly reported in the brain of individuals with schizophrenia. However, a causal relationship between the abnormal immune/inflammation-related gene expression and schizophrenia has not been determined. We conducted co-expression networks using publicly available RNA-seq data from prefrontal cortex (PFC) and hippocampus (HP) of 64 individuals with schizophrenia and 64 unaffected controls from the SMRI tissue collections. We identified proinflammatory cytokine, transmembrane tumor necrosis factor-α (tmTNFα), as a potential regulator in the module of co-expressed genes that we find related to the immune/inflammation response in endothelial cells (ECs) and/or microglia of the brain of individuals with schizophrenia. The immune/inflammation-related modules associated with schizophrenia and the TNF signaling pathway that regulate the network were replicated in an independent cohort of brain samples from 68 individuals with schizophrenia and 135 unaffected controls. To investigate the association between the overexpression of tmTNFα in brain ECs and schizophrenia-like behaviors, we induced short-term overexpression of the uncleavable form of (uc)-tmTNFα in ECs of mouse brain for 7 weeks. We found schizophrenia-relevant behavioral deficits in these mice, including cognitive impairment, abnormal sensorimotor gating, and sensitization to methamphetamine (METH) induced locomotor activity and METH-induced neurotransmitter levels. These uc-tmTNFα effects were mediated by TNF receptor2 (TNFR2) and induced activation of TNFR2 signaling in astrocytes and neurons. A neuronal module including neurotransmitter signaling pathways was down-regulated in the brain of mice by the short-term overexpression of the gene, while an immune/inflammation-related module was up-regulated in the brain of mice after long-term expression of 22 weeks. Our results indicate that tmTNFα may play a direct role in regulating neurotransmitter signaling pathways that contribute to the clinical features of schizophrenia.

Original languageEnglish
Pages (from-to)843-855
Number of pages13
JournalMolecular Psychiatry
Volume28
Issue number2
DOIs
StatePublished - Feb 2023

Fingerprint

Dive into the research topics of 'Overexpression of transmembrane TNFα in brain endothelial cells induces schizophrenia-relevant behaviors'. Together they form a unique fingerprint.

Cite this