Paramagnetic ultrasmall Ho2O3 and Tm2O3 nanoparticles: characterization of r2 values and in vivo T2 MR images at a 3.0 T MR field

Shuwen Liu, Tirusew Tegafaw, Huan Yue, Son Long Ho, Soyeon Kim, Ji Ae Park, Ahrum Baek, Mohammad Yaseen Ahmad, So Hyeon Yang, Dong Wook Hwang, Seungho Kim, Abdullah Khamis Ali Al Saidi, Dejun Zhao, Ying Liu, Sung Wook Nam, Kwon Seok Chae, Yongmin Chang, Gang Ho Lee

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Paramagnetic ultrasmall Ho2O3 and Tm2O3 nanoparticles (davg = ∼2.1 nm) grafted with various hydrophilic and biocompatible ligands such as poly(ethylene glycol) diacid (Mn = 250 and 600 amu) and polyacrylic acid (Mw = 1800 amu) were synthesized via a one-pot polyol method. Appreciable transverse (r2) and negligible longitudinal (r1) water proton spin relaxivity values were observed for all nanoparticle samples. The r2 values increased with increasing nanoparticle magnetic moment and decreased with increasing ligand size. Owing to the aforementioned r1 and r2 values, the nanoparticle samples exhibited appreciable negative contrast enhancements in in vivo T2 magnetic resonance (MR) images at a 3.0 T MR field after intravenous injection, demonstrating their potential as efficient T2 MRI contrast agents.

Original languageEnglish
Pages (from-to)5857-5870
Number of pages14
JournalMaterials Advances
Volume3
Issue number14
DOIs
StatePublished - 23 May 2022

Fingerprint

Dive into the research topics of 'Paramagnetic ultrasmall Ho2O3 and Tm2O3 nanoparticles: characterization of r2 values and in vivo T2 MR images at a 3.0 T MR field'. Together they form a unique fingerprint.

Cite this