TY - JOUR
T1 - Parvalbumin-expressing GABAergic interneurons and perineuronal nets in the prelimbic and orbitofrontal cortices in association with basal anxiety-like behaviors in adult mice
AU - Lee, Juhyun
AU - Lee, Kyungmin
N1 - Publisher Copyright:
© 2020 Elsevier B.V.
PY - 2021/2/1
Y1 - 2021/2/1
N2 - Parvalbumin-expressing (PV+) GABAergic interneurons are the principal inhibitory interneurons in the cortex, and a decrease in their number or PV protein expression is associated with changes in brain function. PV+ neurons are surrounded by the perineuronal net (PNN), a reticular extracellular matrix structure surrounding the soma and proximal dendrites. Although the prefrontal cortex is critically involved in anxiety-like behavior, it is not known how cortical PV+ neurons enwrapped with PNN contribute to basal anxiety behavior. To address the issue, we employed Wisteria floribunda agglutinin (WFA) to label the PNN and measured the densities and PV immunofluorescence of PV+ neurons, including those enwrapped with PNN (i.e., PV+WFA+ neurons) in the orbitofrontal (OFC) and prelimbic cortices of mice whose basal anxiety levels had been assessed in the open field test. We found that these densities, but not PV expression according to immunofluorescence intensity, were positively correlated with the percentage of time spent and the distance traveled in the center of an open field. Thus, these data demonstrate that the densities of OFC PV+ and PV+WFA+ neurons are significantly inversely correlated with basal anxiety levels of adult mice measured in the open field test and may represent a target for future anxiolytic therapeutics.
AB - Parvalbumin-expressing (PV+) GABAergic interneurons are the principal inhibitory interneurons in the cortex, and a decrease in their number or PV protein expression is associated with changes in brain function. PV+ neurons are surrounded by the perineuronal net (PNN), a reticular extracellular matrix structure surrounding the soma and proximal dendrites. Although the prefrontal cortex is critically involved in anxiety-like behavior, it is not known how cortical PV+ neurons enwrapped with PNN contribute to basal anxiety behavior. To address the issue, we employed Wisteria floribunda agglutinin (WFA) to label the PNN and measured the densities and PV immunofluorescence of PV+ neurons, including those enwrapped with PNN (i.e., PV+WFA+ neurons) in the orbitofrontal (OFC) and prelimbic cortices of mice whose basal anxiety levels had been assessed in the open field test. We found that these densities, but not PV expression according to immunofluorescence intensity, were positively correlated with the percentage of time spent and the distance traveled in the center of an open field. Thus, these data demonstrate that the densities of OFC PV+ and PV+WFA+ neurons are significantly inversely correlated with basal anxiety levels of adult mice measured in the open field test and may represent a target for future anxiolytic therapeutics.
KW - Basal anxiety
KW - Orbitofrontal cortex
KW - Parvalbumin
KW - Perineuronal net
KW - Prelimbic cortex
UR - http://www.scopus.com/inward/record.url?scp=85094591317&partnerID=8YFLogxK
U2 - 10.1016/j.bbr.2020.112915
DO - 10.1016/j.bbr.2020.112915
M3 - Article
C2 - 32949644
AN - SCOPUS:85094591317
SN - 0166-4328
VL - 398
JO - Behavioural Brain Research
JF - Behavioural Brain Research
M1 - 112915
ER -