Abstract
Mitochondria-associated endoplasmic reticulum membrane (MAM) is a structural link between mitochondria and endoplasmic reticulum (ER). MAM regulates Ca 2+ transport from the ER to mitochondria via an IP3R1-GRP75-VDAC1 complex–dependent mechanism. Excessive MAM formation may cause mitochondrial Ca 2+ overload and mitochondrial dysfunction. However, the exact implication of MAM formation in metabolic syndromes remains debatable. Here, we demonstrate that PDK4 interacts with and stabilizes the IP3R1-GRP75-VDAC1 complex at the MAM interface. Obesity-induced increase in PDK4 activity augments MAM formation and suppresses insulin signaling. Conversely, PDK4 inhibition dampens MAM formation and improves insulin signaling by preventing MAM-induced mitochondrial Ca 2+ accumulation, mitochondrial dysfunction, and ER stress. Furthermore, Pdk4 2 / 2 mice exhibit reduced MAM formation and are protected against diet-induced skeletal muscle insulin resistance. Finally, forced formation and stabilization of MAMs with synthetic ER–mitochondria linker prevented the beneficial effects of PDK4 deficiency on insulin signaling. Overall, our findings demonstrate a critical mediatory role of PDK4 in the development of skeletal muscle insulin resistance via enhancement of MAM formation.
Original language | English |
---|---|
Pages (from-to) | 571-586 |
Number of pages | 16 |
Journal | Diabetes |
Volume | 68 |
Issue number | 3 |
DOIs | |
State | Published - 1 Mar 2019 |