TY - JOUR
T1 - Performance of GaN metal-oxide-semiconductor field-effect transistor with regrown n+-source/drain on a selectively etched GaN
AU - Kim, Do Kywn
AU - Kim, Dong Seok
AU - Chang, Sung Jae
AU - Lee, Chang Ju
AU - Bae, Youngho
AU - Cristoloveanu, Sorin
AU - Lee, Jung Hee
AU - Hahm, Sung Ho
PY - 2013/6
Y1 - 2013/6
N2 - We proposed and fabricated normally off GaN MOSFETs with an epitaxially regrown n+ GaN source/drain after a short period of dry etching on a sapphire substrate. The regrown S/D MOSFET after dry etching (MOSFET A) exhibited enhanced performance in terms of current drivability and access resistance compared with the same MOSFET without the surface etching before the regrowth (MOSFET B). While MOSFET A has a saturation drain current of 10 mA/mm at VG = 8 V, a field-effect mobility of 22 cm2 V -1 s-1, and a series resistance RSD of 0.57 kΩ, MOSFET B has 3 mA/mm, 12 cm2 V-1 s-1, and 0.93 kΩ, respectively. The electrical characteristic of MOSFET A was also much more improved than that of MOSFET B at low temperatures. Mobility degradation at low temperatures was related to the effect of impurity scattering caused by crystal defects generated during the metal organic chemical vapor deposition (MOCVD) growth.
AB - We proposed and fabricated normally off GaN MOSFETs with an epitaxially regrown n+ GaN source/drain after a short period of dry etching on a sapphire substrate. The regrown S/D MOSFET after dry etching (MOSFET A) exhibited enhanced performance in terms of current drivability and access resistance compared with the same MOSFET without the surface etching before the regrowth (MOSFET B). While MOSFET A has a saturation drain current of 10 mA/mm at VG = 8 V, a field-effect mobility of 22 cm2 V -1 s-1, and a series resistance RSD of 0.57 kΩ, MOSFET B has 3 mA/mm, 12 cm2 V-1 s-1, and 0.93 kΩ, respectively. The electrical characteristic of MOSFET A was also much more improved than that of MOSFET B at low temperatures. Mobility degradation at low temperatures was related to the effect of impurity scattering caused by crystal defects generated during the metal organic chemical vapor deposition (MOCVD) growth.
UR - http://www.scopus.com/inward/record.url?scp=84881078034&partnerID=8YFLogxK
U2 - 10.7567/JJAP.52.061001
DO - 10.7567/JJAP.52.061001
M3 - Article
AN - SCOPUS:84881078034
SN - 0021-4922
VL - 52
JO - Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers
JF - Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers
IS - 6 PART 1
M1 - 061001
ER -