Abstract
A thin FePt film was deposited onto a CrV seed layer at 400°C and showed a high coercivity (~3,400 Oe) and high magnetization (900-1,000 emu/cm3) characteristic of L10 phase. However, the magnetic properties of patterned media fabricated from the film stack were degraded due to the Ar-ion bombardment. We employed a deposition-last process, in which FePt film deposited at room temperature underwent lift-off and post-annealing processes, to avoid the exposure of FePt to Ar plasma. A patterned medium with 100-nm nano-columns showed an out-of-plane coercivity fivefold larger than its in-plane counterpart and a remanent magnetization comparable to saturation magnetization in the out-of-plane direction, indicating a high perpendicular anisotropy. These results demonstrate the high perpendicular anisotropy in FePt patterned media using a Cr-based compound seed layer for the first time and suggest that ultra-high-density magnetic recording media can be achieved using this optimized top-down approach.
Original language | English |
---|---|
Article number | 13 |
Pages (from-to) | 1-6 |
Number of pages | 6 |
Journal | Nanoscale Research Letters |
Volume | 6 |
Issue number | 1 |
DOIs | |
State | Published - Jan 2011 |
Keywords
- CrV underlayer
- E-beam lithography
- FePt
- Patterned media