TY - JOUR
T1 - Pharmacokinetics and pharmacokinetic/pharmacodynamic integration of orbifloxacin in Korean Hanwoo cattle
AU - Elias, G.
AU - Lee, J. S.
AU - Hwang, M. H.
AU - Park, Y. S.
AU - Cho, K. H.
AU - Kim, Y. H.
AU - Park, S. C.
PY - 2009/6
Y1 - 2009/6
N2 - The pharmacokinetics and pharmacodynamics of orbifloxacin were studied in six clinically healthy Hanwoo cows after intravenous (i.v.) and intramuscular (i.m.) administration at a dose of 3 mg/kg. Orbifloxacin concentrations were determined by high performance liquid chromatography with fluorescence detection. Steady-state volume of distribution and clearance of orbifloxacin after i.v. administration were 0.92 L/kg and 0.24 L/h·kg, respectively. Following i.m. administration, a slow and complete absorption with absolute bioavailability of 101.4%, and a maximum concentration (Cmax) of 1.17 μg/mL at 1.04 h were observed. The in vitro serum protein binding was 14.76%. The in vitro antibacterial activity of orbifloxacin against a pathogenic strain of Mannheimia haemolytica (M. haemolytica), Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) was determined. The ex vivo activity of orbifloxacin against M. haemolytica strain was also determined, and these data were integrated with the ex vivo bacterial counts to establish AUC 24h/MIC values producing bacteriostatic action, bactericidal action and elimination of bacteria. Mean values were 32.7, 51.6 and 102.6 h, respectively. From these data, we predict that orbifloxacin, when administered i.m. at a dosage of 2.5-5 mg/kg once a day, would be effective against bovine pathogens, such as M. haemolytica. Additional studies may be needed to confirm its efficacy in a clinical setting, and to evaluate the penetration of the drug in diseased tissues.
AB - The pharmacokinetics and pharmacodynamics of orbifloxacin were studied in six clinically healthy Hanwoo cows after intravenous (i.v.) and intramuscular (i.m.) administration at a dose of 3 mg/kg. Orbifloxacin concentrations were determined by high performance liquid chromatography with fluorescence detection. Steady-state volume of distribution and clearance of orbifloxacin after i.v. administration were 0.92 L/kg and 0.24 L/h·kg, respectively. Following i.m. administration, a slow and complete absorption with absolute bioavailability of 101.4%, and a maximum concentration (Cmax) of 1.17 μg/mL at 1.04 h were observed. The in vitro serum protein binding was 14.76%. The in vitro antibacterial activity of orbifloxacin against a pathogenic strain of Mannheimia haemolytica (M. haemolytica), Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) was determined. The ex vivo activity of orbifloxacin against M. haemolytica strain was also determined, and these data were integrated with the ex vivo bacterial counts to establish AUC 24h/MIC values producing bacteriostatic action, bactericidal action and elimination of bacteria. Mean values were 32.7, 51.6 and 102.6 h, respectively. From these data, we predict that orbifloxacin, when administered i.m. at a dosage of 2.5-5 mg/kg once a day, would be effective against bovine pathogens, such as M. haemolytica. Additional studies may be needed to confirm its efficacy in a clinical setting, and to evaluate the penetration of the drug in diseased tissues.
UR - http://www.scopus.com/inward/record.url?scp=65949119114&partnerID=8YFLogxK
U2 - 10.1111/j.1365-2885.2008.01027.x
DO - 10.1111/j.1365-2885.2008.01027.x
M3 - Article
C2 - 19646085
AN - SCOPUS:65949119114
SN - 0140-7783
VL - 32
SP - 219
EP - 228
JO - Journal of Veterinary Pharmacology and Therapeutics
JF - Journal of Veterinary Pharmacology and Therapeutics
IS - 3
ER -