Photoelectrochemical and photocatalytic behaviors of hematite-decorated titania nanotube arrays: Energy level mismatch versus surface specific reactivity

Tae Hwa Jeon, Wonyong Choi, Hyunwoong Park

Research output: Contribution to journalArticlepeer-review

62 Scopus citations

Abstract

Nanocrystalline hematite particles (α-Fe2O3) were electrodeposited on the TiO2 nanotube (TiNT) arrays that were fabricated via anodization of Ti foils. The short precontact time (1 h) of aqueous ferric ions (Fe3+) on TiNT resulted in formation of hematite particles selectively on the mouth surface of TiNT (hematite@1 h/TiNT), whereas the long precontact time (24 h) resulted in complete filling of the TiNT inside and an even full-covering of the TiNT top surface with the hematite particles (hematite@24 h/TiNT). For comparison, hematite particles were also electrodeposited on TiO2-nanoparticulate films obtained via oxidative annealing of Ti foil resulting in hematite fully covered TiO2 nanoparticles (hematite/TiNP). Photoelectrochemical (PEC) study with AM 1.5 light (UV + Vis) indicated that the PEC activity of TiNT decreased by ca. 40% and almost completely vanished when hematite covered the full surface of TiNT (hematite@ 24 h/TiNT) and loaded on the mouth surface of TiNT (hematite@1 h/TiNT), respectively. The relatively higher PEC activity of hematite@24 h/TiNT was further observed under varying visible light conditions (400 nm < < 500 nm). Hematite/TiNP also has ca. 40%-reduced PEC activity as compared to TiNP under AM 1.5 light, the tendency of which is similar to hematite@24 h/TiNT. Photocatalytic (PC) activities of TiNT and hematite/TiNT for degradation of aqueous phenol under AM 1.5-light were also compared, which indicates that the PC activity of TiNT vanishes almost completely with hematite@1 h/TiNT, whereas it is recovered at a moderate level with hematite@24 h/TiNT. All of these PEC and PC behaviors of TiNT and hematite/TiNT were discussed in terms of hematite-induced charge recombination due to an energy level mismatch between TiO2 and hematite, as well as surface-specific photoactivity of TiNT (i.e., mouth surface vs interwall and/or underlying base layer). Various surface analysis techniques (XRD, XPS, TEM, UV-vis diffuse reflectance) were employed to understand the surface states of TiNT and hematite/TiNT. Finally, more detailed charge transfer mechanism was proposed.

Original languageEnglish
Pages (from-to)7134-7142
Number of pages9
JournalJournal of Physical Chemistry C
Volume115
Issue number14
DOIs
StatePublished - 14 Apr 2011

Fingerprint

Dive into the research topics of 'Photoelectrochemical and photocatalytic behaviors of hematite-decorated titania nanotube arrays: Energy level mismatch versus surface specific reactivity'. Together they form a unique fingerprint.

Cite this