TY - JOUR
T1 - Phytohormones enabled endophytic Penicillium funiculosum LHL06 protects Glycine max L. from synergistic toxicity of heavy metals by hormonal and stress-responsive proteins modulation
AU - Bilal, Saqib
AU - Shahzad, Raheem
AU - Khan, Abdul Latif
AU - Al-Harrassi, Ahmed
AU - Kim, Chang Kil
AU - Lee, In Jung
N1 - Publisher Copyright:
© 2019
PY - 2019/11/5
Y1 - 2019/11/5
N2 - This study investigates the stress-mitigating effects of endophytic Penicillium funiculosum LHL06 on soybean roots via modulation of physio-biochemical, molecular, and proteomic responses to combined heavy metal (Ni, Cu, Pb, Cr, and Al) toxicity. Preliminary screening revealed that LHL06 can tolerate and remediate combined heavy metal contamination in its media and upregulate gibberellins (GA1, GA3, GA4, GA7 and GA9) and indole-3-acetic acid (IAA) production. Inoculation of LHL06 resulted in marked reduction of metals uptake in roots and shoots by downregulating heavy metal ATPase genes (GmHMA13, GmHMA14, GmHMA19) and GmMATE1 compared to non-inoculated plants; in turn, this decreased abscisic acid and jasmonic acid levels. Moreover, triggering of free amino acid metabolism in LHL06-inoculated roots significantly upregulated expression of stress-related proteins (glutathione S-transferase L3, isoflavone reductase-like, chalcone isomerase A, NAD(P)H dehydrogenase (quinone), FQR1-like 1 isoform X2, and Peroxidase 3) to combat metals toxicity. Compared to non-inoculated-plants, LHL06-inoculated-plants exhibited higher antioxidant activity and transcript accumulation of glutathione S-transferase (GmGST8 and GmGST3), G6PDH, and GmSOD1[Cu-Zn], which decreased metal-induced reactive oxygen species. Therefore, LHL06-inoculation remediate combined metal contamination in soil, activate signaling network of stress-responsive hormones and antioxidant systems for promoting growth and tolerance, and reduce metal-accumulation, thereby making plants safer for consumption.
AB - This study investigates the stress-mitigating effects of endophytic Penicillium funiculosum LHL06 on soybean roots via modulation of physio-biochemical, molecular, and proteomic responses to combined heavy metal (Ni, Cu, Pb, Cr, and Al) toxicity. Preliminary screening revealed that LHL06 can tolerate and remediate combined heavy metal contamination in its media and upregulate gibberellins (GA1, GA3, GA4, GA7 and GA9) and indole-3-acetic acid (IAA) production. Inoculation of LHL06 resulted in marked reduction of metals uptake in roots and shoots by downregulating heavy metal ATPase genes (GmHMA13, GmHMA14, GmHMA19) and GmMATE1 compared to non-inoculated plants; in turn, this decreased abscisic acid and jasmonic acid levels. Moreover, triggering of free amino acid metabolism in LHL06-inoculated roots significantly upregulated expression of stress-related proteins (glutathione S-transferase L3, isoflavone reductase-like, chalcone isomerase A, NAD(P)H dehydrogenase (quinone), FQR1-like 1 isoform X2, and Peroxidase 3) to combat metals toxicity. Compared to non-inoculated-plants, LHL06-inoculated-plants exhibited higher antioxidant activity and transcript accumulation of glutathione S-transferase (GmGST8 and GmGST3), G6PDH, and GmSOD1[Cu-Zn], which decreased metal-induced reactive oxygen species. Therefore, LHL06-inoculation remediate combined metal contamination in soil, activate signaling network of stress-responsive hormones and antioxidant systems for promoting growth and tolerance, and reduce metal-accumulation, thereby making plants safer for consumption.
KW - Antioxidants
KW - Gibberellins
KW - Heavy metals
KW - Proteomics
KW - Soybean
UR - http://www.scopus.com/inward/record.url?scp=85068208974&partnerID=8YFLogxK
U2 - 10.1016/j.jhazmat.2019.120824
DO - 10.1016/j.jhazmat.2019.120824
M3 - Article
C2 - 31271935
AN - SCOPUS:85068208974
SN - 0304-3894
VL - 379
JO - Journal of Hazardous Materials
JF - Journal of Hazardous Materials
M1 - 120824
ER -