TY - JOUR
T1 - Polymeric Colloidal Nanostructures Fabricated via Highly Controlled Convective Assembly and Their Use for Molecular Imprinting
AU - Yang, Jin Chul
AU - Park, Jin Young
N1 - Publisher Copyright:
© 2016 American Chemical Society.
PY - 2016/3/30
Y1 - 2016/3/30
N2 - In this work, the formation of various polystyrene (PS) colloidal structures on striped PS patterns is demonstrated based on a simple and novel convective assembly method that controls the electrostatic interactions between the PS colloidal particles and sodium dodecyl sulfate (SDS). Under the optimal conditions (different withdrawal speeds, channel dimensions, suspension concentrations, etc.), highly ordered structures such as highly close-packed, zigzag, and linear colloidal aggregates are observed. In addition, these colloidal arrangements are used for development of molecularly imprinted polymer (MIP) sensors with highly improved sensing properties. Using PDMS replicas, three hemispherical poly(methacrylic acid-ethylene glycol dimethacrylate) (poly(MAA-EGDMA)) MIP films, including planar MIP and non-imprinted polymer (NIP) films, are photopolymerized for detection of trace atrazine in an aqueous solution. From gravimetric quartz crystal microbalance (QCM) measurements, a non-close-packed MIP film exhibits highest sensing response (Δf = 932 Hz) to atrazine detection among hemispherical MIP films and shows 6.5-fold higher sensing response than the planar MIP film. In addition, the sensitivity of the MIP sensor is equivalent to -119 Hz/(mol L-1). From the ratio of slopes of the calibration curves for the hemispherical MIP and NIP films, the imprinting factor (If) is as high as 11.0. The hemispherical MIP film also shows excellent selectivity in comparison with the sensing responses of other analogous herbicides. As a result, this molecular surface imprinting using PS colloidal arrays is highly efficient for herbicide detection.
AB - In this work, the formation of various polystyrene (PS) colloidal structures on striped PS patterns is demonstrated based on a simple and novel convective assembly method that controls the electrostatic interactions between the PS colloidal particles and sodium dodecyl sulfate (SDS). Under the optimal conditions (different withdrawal speeds, channel dimensions, suspension concentrations, etc.), highly ordered structures such as highly close-packed, zigzag, and linear colloidal aggregates are observed. In addition, these colloidal arrangements are used for development of molecularly imprinted polymer (MIP) sensors with highly improved sensing properties. Using PDMS replicas, three hemispherical poly(methacrylic acid-ethylene glycol dimethacrylate) (poly(MAA-EGDMA)) MIP films, including planar MIP and non-imprinted polymer (NIP) films, are photopolymerized for detection of trace atrazine in an aqueous solution. From gravimetric quartz crystal microbalance (QCM) measurements, a non-close-packed MIP film exhibits highest sensing response (Δf = 932 Hz) to atrazine detection among hemispherical MIP films and shows 6.5-fold higher sensing response than the planar MIP film. In addition, the sensitivity of the MIP sensor is equivalent to -119 Hz/(mol L-1). From the ratio of slopes of the calibration curves for the hemispherical MIP and NIP films, the imprinting factor (If) is as high as 11.0. The hemispherical MIP film also shows excellent selectivity in comparison with the sensing responses of other analogous herbicides. As a result, this molecular surface imprinting using PS colloidal arrays is highly efficient for herbicide detection.
KW - atrazine
KW - colloidal lithography
KW - molecularly imprinted polymer
KW - photopolymerization
KW - poly(MAA-EGDMA)
UR - http://www.scopus.com/inward/record.url?scp=84962074338&partnerID=8YFLogxK
U2 - 10.1021/acsami.6b00375
DO - 10.1021/acsami.6b00375
M3 - Article
AN - SCOPUS:84962074338
SN - 1944-8244
VL - 8
SP - 7381
EP - 7389
JO - ACS applied materials & interfaces
JF - ACS applied materials & interfaces
IS - 11
ER -