Abstract
Graphite nanoplatelets (GNPs) have been used as a secondary filler to improve the electrical conductivity of poly(phenylene sulfide) (PPS)/graphite composites for use as bipolar plates in fuel cells, and the effects of adding small quantities of GNPs on the electrical, thermal, and mechanical properties of PPS/GNP/graphite composites have been extensively studied. The GNPs were compounded with PPS to produce master batch (MB) chips that were further ground to fine MB powder (MBg). PPS/MBg/graphite powders were compressed to fabricate 10-mm thick square samples. Composites containing a large quantity of graphite (~80 wt%) were then tested for use as a bipolar plate in phosphoric acid fuel cells. When 5 wt% GNP was added to the PPS/graphite composite, the in-plane electrical conductivity increased almost twofold from 643 to 1340 S·cm−1, the through-plane electrical conductivity increased from 19 to 54 S·cm−1, the through-plane thermal conductivity increased approximately two-fold from 60 to 129 W·(mK)−1, and the flexural strength decreased slightly from 32 to 26 MPa. The fractured surface of the compressed MBg sample revealed well-dispersed GNPs in the PPS matrix, which created electrical pathways and improved the electrical conductivity of the non-conducting PPS matrix material. Thus, the PPS/GNP/graphite composite is a promising system for bipolar plate applications because a higher amount of graphite (~93 wt%) is needed in PPS/graphite composites to reach the same level of electrical conductivity as the PPS/MBg(5 wt%)/graphite (75 wt%) composite, and such a large quantity of graphite is difficult to process and leads to weaker mechanical properties. [Figure not available: see fulltext.]
Original language | English |
---|---|
Pages (from-to) | 1010-1016 |
Number of pages | 7 |
Journal | Macromolecular Research |
Volume | 28 |
Issue number | 11 |
DOIs | |
State | Published - 1 Oct 2020 |
Keywords
- bipolar plate
- composite
- graphite
- graphite nanoplate
- phosphoric acid fuel cell
- poly(phenylene sulfide)