TY - JOUR
T1 - Pre-swelled nanostructured electrode for lithium ion battery
T2 - TiO 2-pillared layered MnO2
AU - Kang, Joo Hee
AU - Paek, Seung Min
AU - Hwang, Seong Ju
AU - Choy, Jin Ho
PY - 2010
Y1 - 2010
N2 - Porous structure of layered manganate pillared with titania nanoparticles has been realized by the exfoliation and reassembling route. First, the layered protonic manganese oxide, H0.13MnO2·0.7H 2O, is exfoliated by the intercalation of tetrabutylammonium (TBA) ions, and then the exfoliated manganate nanosheets are reassembled in the presence of titania nanoparticles, which results in porous nanohybrid materials. X-Ray diffraction (XRD), cross-sectional transmission electron microscopy (TEM), and Mn K-edge X-ray absorption spectroscopy (XAS) analyses clearly show that the titania nanoparticles with a diameter of 1 nm are successfully intercalated into the two dimensional manganate lattice without any deterioration of electronic structure and local symmetry of Mn ion. According to the N2 adsorption-desorption isotherms, the present nanohybrid is determined to be highly porous with a high specific surface area (106 m 2 g-1), which is 10 times larger than that (11 m 2 g-1) of the pristine. Finally, electrochemical experiments demonstrate that the specific capacity of the present pillared material is 288 mA h g-1, which is significantly larger than the theoretical value (193 mA h g-1) from the physical mixture of the pristine potassium birnessite and titania nanoparticles.
AB - Porous structure of layered manganate pillared with titania nanoparticles has been realized by the exfoliation and reassembling route. First, the layered protonic manganese oxide, H0.13MnO2·0.7H 2O, is exfoliated by the intercalation of tetrabutylammonium (TBA) ions, and then the exfoliated manganate nanosheets are reassembled in the presence of titania nanoparticles, which results in porous nanohybrid materials. X-Ray diffraction (XRD), cross-sectional transmission electron microscopy (TEM), and Mn K-edge X-ray absorption spectroscopy (XAS) analyses clearly show that the titania nanoparticles with a diameter of 1 nm are successfully intercalated into the two dimensional manganate lattice without any deterioration of electronic structure and local symmetry of Mn ion. According to the N2 adsorption-desorption isotherms, the present nanohybrid is determined to be highly porous with a high specific surface area (106 m 2 g-1), which is 10 times larger than that (11 m 2 g-1) of the pristine. Finally, electrochemical experiments demonstrate that the specific capacity of the present pillared material is 288 mA h g-1, which is significantly larger than the theoretical value (193 mA h g-1) from the physical mixture of the pristine potassium birnessite and titania nanoparticles.
UR - http://www.scopus.com/inward/record.url?scp=77249118770&partnerID=8YFLogxK
U2 - 10.1039/b918363a
DO - 10.1039/b918363a
M3 - Article
AN - SCOPUS:77249118770
SN - 0959-9428
VL - 20
SP - 2033
EP - 2038
JO - Journal of Materials Chemistry
JF - Journal of Materials Chemistry
IS - 10
ER -