TY - JOUR
T1 - Predicting the mortality from asbestos-related diseases based on the amount of asbestos used and the effects of slate buildings in Korea
AU - Kim, Su Young
AU - Kim, Young Chan
AU - Kim, Yongku
AU - Hong, Won Hwa
N1 - Publisher Copyright:
© 2015 Elsevier B.V.
PY - 2016/1/15
Y1 - 2016/1/15
N2 - Asbestos has been used since ancient times, owing to its heat-resistant, rot-proof, and insulating qualities, and its usage rapidly increased after the industrial revolution. In Korea, all slates were previously manufactured in a mixture of about 90% cement and 10% chrysotile (white asbestos). This study used a Generalized Poisson regression (GPR) model after creating databases of the mortality from asbestos-related diseases and of the amount of asbestos used in Korea as a means to predict the future mortality of asbestos-related diseases and mesothelioma in Korea. Moreover, to predict the future mortality according to the effects of slate buildings, a comparative analysis based on the result of the GPR model was conducted after creating databases of the amount of asbestos used in Korea and of the amount of asbestos used in making slates. We predicted the mortality from asbestos-related diseases by year, from 2014 to 2036, according to the amount of asbestos used. As a result, it was predicted that a total of 1942 people (maximum, 3476) will die by 2036. Moreover, based on the comparative analysis according to the influence index, it was predicted that a maximum of 555 people will die from asbestos-related diseases by 2031 as a result of the effects of asbestos-containing slate buildings, and the mortality was predicted to peak in 2021, with 53 cases. Although mesothelioma and pulmonary asbestosis were considered as asbestos-related diseases, these are not the only two diseases caused by asbestos. However the results of this study are highly important and relevant, as, for the first time in Korea, the future mortality from asbestos-related diseases was predicted. These findings are expected to contribute greatly to the Korean government's policies related to the compensation for asbestos victims.
AB - Asbestos has been used since ancient times, owing to its heat-resistant, rot-proof, and insulating qualities, and its usage rapidly increased after the industrial revolution. In Korea, all slates were previously manufactured in a mixture of about 90% cement and 10% chrysotile (white asbestos). This study used a Generalized Poisson regression (GPR) model after creating databases of the mortality from asbestos-related diseases and of the amount of asbestos used in Korea as a means to predict the future mortality of asbestos-related diseases and mesothelioma in Korea. Moreover, to predict the future mortality according to the effects of slate buildings, a comparative analysis based on the result of the GPR model was conducted after creating databases of the amount of asbestos used in Korea and of the amount of asbestos used in making slates. We predicted the mortality from asbestos-related diseases by year, from 2014 to 2036, according to the amount of asbestos used. As a result, it was predicted that a total of 1942 people (maximum, 3476) will die by 2036. Moreover, based on the comparative analysis according to the influence index, it was predicted that a maximum of 555 people will die from asbestos-related diseases by 2031 as a result of the effects of asbestos-containing slate buildings, and the mortality was predicted to peak in 2021, with 53 cases. Although mesothelioma and pulmonary asbestosis were considered as asbestos-related diseases, these are not the only two diseases caused by asbestos. However the results of this study are highly important and relevant, as, for the first time in Korea, the future mortality from asbestos-related diseases was predicted. These findings are expected to contribute greatly to the Korean government's policies related to the compensation for asbestos victims.
KW - Asbestos
KW - Asbestos-related diseases
KW - Mortality
KW - Slate building
UR - http://www.scopus.com/inward/record.url?scp=84945303862&partnerID=8YFLogxK
U2 - 10.1016/j.scitotenv.2015.10.115
DO - 10.1016/j.scitotenv.2015.10.115
M3 - Article
C2 - 26513124
AN - SCOPUS:84945303862
SN - 0048-9697
VL - 542
SP - 1
EP - 11
JO - Science of the Total Environment
JF - Science of the Total Environment
ER -