TY - JOUR
T1 - Probabilistic learning of similarity measures for tensor PCA
AU - Lee, Kwanyong
AU - Park, Hyeyoung
PY - 2012/7/15
Y1 - 2012/7/15
N2 - In order to extract low-dimensional features from image data, matrix-based subspace methods such as 2DPCA and tensor PCA have been recently proposed. Since these methods extract features based on 2D image matrices rather than 1D vectors, they can preserve useful information in image matrices and we can expect better classification performance by using the matrix features. In order to maximize the advantages of the matrix features, it is also important to use an appropriate similarity measure between two feature matrices. This paper proposes a method for learning similarity measures for feature matrices, which utilizes distribution properties of given data set and class membership. Through computational experiments with facial image data, we confirm that the obtained similarity measure by the proposed method can give better classification performance than conventional similarity measures for matrix data.
AB - In order to extract low-dimensional features from image data, matrix-based subspace methods such as 2DPCA and tensor PCA have been recently proposed. Since these methods extract features based on 2D image matrices rather than 1D vectors, they can preserve useful information in image matrices and we can expect better classification performance by using the matrix features. In order to maximize the advantages of the matrix features, it is also important to use an appropriate similarity measure between two feature matrices. This paper proposes a method for learning similarity measures for feature matrices, which utilizes distribution properties of given data set and class membership. Through computational experiments with facial image data, we confirm that the obtained similarity measure by the proposed method can give better classification performance than conventional similarity measures for matrix data.
KW - Principal component analysis
KW - Probabilistic learning
KW - Similarity measure
KW - Tensor
UR - http://www.scopus.com/inward/record.url?scp=84860225356&partnerID=8YFLogxK
U2 - 10.1016/j.patrec.2012.03.019
DO - 10.1016/j.patrec.2012.03.019
M3 - Article
AN - SCOPUS:84860225356
SN - 0167-8655
VL - 33
SP - 1364
EP - 1372
JO - Pattern Recognition Letters
JF - Pattern Recognition Letters
IS - 10
ER -