Probing the growth and melting pathways of a decagonal quasicrystal in real-time

Insung Han, Xianghui Xiao, Ashwin J. Shahani

Research output: Contribution to journalArticlepeer-review

16 Scopus citations

Abstract

How does a quasicrystal grow? Despite the decades of research that have been dedicated to this area of study, it remains one of the fundamental puzzles in the field of crystal growth. Although there has been no lack of theoretical studies on quasicrystal growth, there have been very few experimental investigations with which to test their various hypotheses. In particular, evidence of the in situ and three-dimensional (3D) growth of a quasicrystal from a parent liquid phase is lacking. To fill-in-the-gaps in our understanding of the solidification and melting pathways of quasicrystals, we performed synchrotron-based X-ray imaging experiments on a decagonal phase with composition of Al-15at%Ni-15at%Co. High-flux X-ray tomography enabled us to observe both growth and melting morphologies of the 3D quasicrystal at temperature. We determined that there is no time-reversal symmetry upon growth and melting of the decagonal quasicrystal. While quasicrystal growth is predominantly dominated by the attachment kinetics of atomic clusters in the liquid phase, melting is instead barrier-less and limited by buoyancy-driven convection. These experimental results provide the much-needed benchmark data that can be used to validate simulations of phase transformations involving this unique phase of matter.

Original languageEnglish
Article number17407
JournalScientific Reports
Volume7
Issue number1
DOIs
StatePublished - 1 Dec 2017

Fingerprint

Dive into the research topics of 'Probing the growth and melting pathways of a decagonal quasicrystal in real-time'. Together they form a unique fingerprint.

Cite this