Protective efficacy of a bivalent H5 influenza vaccine candidate against both clades 2.3.2.1 and 2.3.4.4 high pathogenic avian influenza viruses in SPF chickens

Hyunjun Kim, Hyun Kyu Cho, Yong Myung Kang, Mingeun Sagong, Sungjun An, Sungyeop Kim, Youn Jeong Lee, Hyun Mi Kang

Research output: Contribution to journalArticlepeer-review

Abstract

Worldwide, high pathogenic avian influenza viruses belonging to clades 2.3.4.4 and 2.3.2.1 have been circulating in both poultry and wild birds. Since 2018, Korea has built a national antigen bank to ensure preparedness in an emergency. In this study, we developed a bivalent vaccine candidate containing antigens derived from two reassortant KA435/2.3.2.1d and H35/2.3.4.4b strains for Korean national antigen bank. We evaluated its immunogenicity and protective efficacy in specific pathogen free chickens. The two vaccine strains, rgKA435-H9N2 PB2/2.3.2.1d and rgH35/2.3.4.4b, both of which were generated successfully by reverse genetics, were highly immunogenic (titres of haemagglutination inhibition: 8.3 and 8.4 log2, respectively) and showed good protective efficacy (100 and 147 50% protective dose, respectively) against lethal challenge with wild-type virus when delivered as a 1:1 mixture. Notably, the vaccine provided complete protection against viral shedding at a full dose (512 HAU) and a 1/10 dose (51.2 HAU), with no clinical signs, after challenge with H35/2.3.4.4b. The bivalent vaccine developed in this study may reduce the cost of vaccine production and could be used as a H5 subtype avian influenza vaccine candidate against two clades simultaneously.

Original languageEnglish
Pages (from-to)2816-2823
Number of pages8
JournalVaccine
Volume41
Issue number17
DOIs
StatePublished - 24 Apr 2023

Keywords

  • Antigen bank
  • Avian influenza
  • Bivalent vaccine
  • H5
  • Protective efficacy

Fingerprint

Dive into the research topics of 'Protective efficacy of a bivalent H5 influenza vaccine candidate against both clades 2.3.2.1 and 2.3.4.4 high pathogenic avian influenza viruses in SPF chickens'. Together they form a unique fingerprint.

Cite this