TY - JOUR
T1 - PUGNAc induces protein ubiquitination in C2C12 myotube cells
AU - Park, Ja Hye
AU - Lee, Jeong Eun
AU - Moon, Pyong Gon
AU - Baek, Moon Chang
N1 - Publisher Copyright:
Copyright © 2015 John Wiley & Sons, Ltd.
PY - 2015/12/1
Y1 - 2015/12/1
N2 - O-linked β-N-acetylglucosaminylation (O-GlcNAcylation) regulates many cellular processes including the cell cycle, cell signaling, and protein trafficking. Dysregulation of O-GlcNAcylation may be involved in the development of insulin resistance and type 2 diabetes. Therefore, it is necessary to identify cellular proteins that are induced by elevated O-GlcNAcylation. Here, using adenosine 5′-triphosphate affinity chromatography, we employed a proteomic approach in order to identify differentially expressed proteins in response to treatment with the O-GlcNAcase inhibitor, O-(2-acetamido-2-deoxy-d-glucopyranosylidene)amino-N-phenylcarbamate (PUGNAc), in mouse C2C12 myotube cells. Among 205 selected genes, we identified 68 nucleotide-binding proteins, 14 proteins that have adenosinetriphosphatase activity, and 10 proteins with ligase activity. Upregulation of proteins, including ubiquitin-activating enzyme E1, proteasome subunit 20S, cullin-associated NEDD8-dissociated protein 1, ezrin, and downregulation of the protein nucleoside diphosphate kinase B, were confirmed by western blot analysis. In particular, we found that the protein ubiquitination level in C2C12 cells was increased by PUGNAc treatment. This is the first report of quantitative proteomic profiles of myotube cells after treatment with PUGNAc, and our results demonstrate the potential to enhance understanding of the relationship between insulin resistance, O-GlcNAc, and PUGNAc in the future.
AB - O-linked β-N-acetylglucosaminylation (O-GlcNAcylation) regulates many cellular processes including the cell cycle, cell signaling, and protein trafficking. Dysregulation of O-GlcNAcylation may be involved in the development of insulin resistance and type 2 diabetes. Therefore, it is necessary to identify cellular proteins that are induced by elevated O-GlcNAcylation. Here, using adenosine 5′-triphosphate affinity chromatography, we employed a proteomic approach in order to identify differentially expressed proteins in response to treatment with the O-GlcNAcase inhibitor, O-(2-acetamido-2-deoxy-d-glucopyranosylidene)amino-N-phenylcarbamate (PUGNAc), in mouse C2C12 myotube cells. Among 205 selected genes, we identified 68 nucleotide-binding proteins, 14 proteins that have adenosinetriphosphatase activity, and 10 proteins with ligase activity. Upregulation of proteins, including ubiquitin-activating enzyme E1, proteasome subunit 20S, cullin-associated NEDD8-dissociated protein 1, ezrin, and downregulation of the protein nucleoside diphosphate kinase B, were confirmed by western blot analysis. In particular, we found that the protein ubiquitination level in C2C12 cells was increased by PUGNAc treatment. This is the first report of quantitative proteomic profiles of myotube cells after treatment with PUGNAc, and our results demonstrate the potential to enhance understanding of the relationship between insulin resistance, O-GlcNAc, and PUGNAc in the future.
KW - ATP-affinity chromatography
KW - C2C12 myotube cell
KW - O-GlcNAc
KW - proteomics
KW - PUGNAc
KW - ubiquitination
UR - http://www.scopus.com/inward/record.url?scp=84984643570&partnerID=8YFLogxK
U2 - 10.1002/cbf.3150
DO - 10.1002/cbf.3150
M3 - Article
C2 - 26531776
AN - SCOPUS:84984643570
SN - 0263-6484
SP - 525
EP - 533
JO - Cell Biochemistry and Function
JF - Cell Biochemistry and Function
ER -