Abstract
Little is known about the dendritic architectures of trigeminal motoneurons innervating antagonistic muscles. Thus, the aim of the present study was to provide a quantitative description of jaw-closing (JC) and jaw-opening (JO) alpha motoneurons and to determine geometrical similarities and differences of the dendritic tree between the two. Seven JC alpha motoneurons and four JO alpha motoneurons were intracellulary labeled with horseradish peroxidase (HRP) in the cat and quantitatively analyzed with a computer-assisted three-dimensional system. The dendritic tree of JC alpha motoneurons was confined within the JC motor nucleus, despite locations of the cell body. In contrast, JO alpha motoneurons generated extensive extranuclear dendrites in the reticular formation. The branching pattern of proximal dendritic segments was simpler in the JC than in the JO alpha motoneurons. Despite these differences, the mean values of dendritic parameters examined per neuron were not different between the two kinds of alpha motoneurons, and the stem dendrite diameter was positively correlated with several dendritic parameters in a linear manner. The present study provides new evidence that underlying design principles of the geometry of the dendritic tree are not concerned with the differences in configuration and branching pattern of the dendritic tree of trigeminal alpha motoneurons innervating antagonistic muscles. In addition, we estimated the number of excitatory and inhibitory synapses covering dendrites of single JC alpha motoneurons.
Original language | English |
---|---|
Pages (from-to) | 265-275 |
Number of pages | 11 |
Journal | Experimental Brain Research |
Volume | 150 |
Issue number | 3 |
DOIs | |
State | Published - Jun 2003 |
Keywords
- HRP
- Intracellular
- Jaw reflex
- Mastication
- Morphometry