TY - JOUR
T1 - Quinoline compound KM11073 enhances BMP-2-dependent osteogenic differentiation of C2C12 cells via activation of p38 signaling and exhibits in vivo bone forming activity
AU - Baek, Seung Hwa
AU - Choi, Sik Won
AU - Park, Sang Joon
AU - Lee, Sang Han
AU - Chun, Hang Suk
AU - Kim, Seong Hwan
N1 - Publisher Copyright:
© 2015 Baek et al.
PY - 2015/3/19
Y1 - 2015/3/19
N2 - Recombinant human bone morphogenetic protein (rhBMP)-2 has been approved by the FDA for clinical application, but its use is limited due to high cost and a supra-physiological dose for therapeutic efficacy. Therefore, recent studies have focused on the generation of new therapeutic small molecules to induce bone formation or potentiate the osteogenic activity of BMP-2. Here, we show that [4-(7-chloroquinolin-4-yl) piperazino][1-phenyl-5-(tri-fluoromethyl)-1H-pyrazol-4-yl]methanone (KM11073) strongly enhances the BMP-2-stimulated induction of alkaline phosphatase (ALP), an early phase biomarker of osteoblast differentiation, in bi-potential mesenchymal progenitor C2C12 cells. The KM11073-mediated ALP induction was inhibited by the BMP antagonist noggin, suggesting that its osteogenic activity occurs via BMP signaling. In addition, a pharmacological inhibition study suggested the involvement of p38 activation in the osteogenic action of KM11073 accompanied by enhanced expression of BMP-2, -6, and -7 mRNA. Furthermore, the in vivo osteogenic activity of KM11073 was confirmed in zebrafish and mouse calvarial bone formation models, suggesting the possibility of its single use for bone formation. In conclusion, the combination of rhBMP-2 with osteogenic small molecules could reduce the use of expensive rhBMP-2, mitigating the undesirable side effects of its supra-physiological dose for therapeutic efficacy. Moreover, due to their inherent physical properties, small molecules could represent the next generation of regenerative medicine.
AB - Recombinant human bone morphogenetic protein (rhBMP)-2 has been approved by the FDA for clinical application, but its use is limited due to high cost and a supra-physiological dose for therapeutic efficacy. Therefore, recent studies have focused on the generation of new therapeutic small molecules to induce bone formation or potentiate the osteogenic activity of BMP-2. Here, we show that [4-(7-chloroquinolin-4-yl) piperazino][1-phenyl-5-(tri-fluoromethyl)-1H-pyrazol-4-yl]methanone (KM11073) strongly enhances the BMP-2-stimulated induction of alkaline phosphatase (ALP), an early phase biomarker of osteoblast differentiation, in bi-potential mesenchymal progenitor C2C12 cells. The KM11073-mediated ALP induction was inhibited by the BMP antagonist noggin, suggesting that its osteogenic activity occurs via BMP signaling. In addition, a pharmacological inhibition study suggested the involvement of p38 activation in the osteogenic action of KM11073 accompanied by enhanced expression of BMP-2, -6, and -7 mRNA. Furthermore, the in vivo osteogenic activity of KM11073 was confirmed in zebrafish and mouse calvarial bone formation models, suggesting the possibility of its single use for bone formation. In conclusion, the combination of rhBMP-2 with osteogenic small molecules could reduce the use of expensive rhBMP-2, mitigating the undesirable side effects of its supra-physiological dose for therapeutic efficacy. Moreover, due to their inherent physical properties, small molecules could represent the next generation of regenerative medicine.
UR - http://www.scopus.com/inward/record.url?scp=84925651693&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0120150
DO - 10.1371/journal.pone.0120150
M3 - Article
C2 - 25789987
AN - SCOPUS:84925651693
SN - 1932-6203
VL - 10
JO - PLoS ONE
JF - PLoS ONE
IS - 3
M1 - e0120150
ER -