TY - JOUR
T1 - Rat odontoblasts may use glutamate to signal dentin injury
AU - Cho, Yi Sul
AU - Ryu, Chang Hyun
AU - Won, Jong Hwa
AU - Vang, Hue
AU - Oh, Seog Bae
AU - Ro, Jin Young
AU - Bae, Yong Chul
N1 - Publisher Copyright:
© 2016 IBRO
PY - 2016/10/29
Y1 - 2016/10/29
N2 - Accumulating evidence indicates that odontoblasts act as sensor cells, capable of triggering action potentials in adjacent pulpal nociceptive axons, suggesting a paracrine signaling via a currently unknown mediator. Since glutamate can mediate signaling by non-neuronal cells, and peripheral axons may express glutamate receptors (GluR), we hypothesized that the expression of high levels of glutamate, and of sensory receptors in odontoblasts, combined with an expression of GluR in adjacent pulpal axons, is the morphological basis for odontoblastic sensory signaling. To test this hypothesis, we investigated the expression of glutamate, the thermo- and mechanosensitive ion channels transient receptor potential vanilloid 1 (TRPV1), transient receptor potential ankyrin 1 (TRPA1), and TWIK-1-related K + channel (TREK-1), and the glutamate receptor mGluR5, in a normal rat dental pulp, and following dentin injury. We also examined the glutamate release from odontoblast in cell culture. Odontoblasts were enriched with glutamate, at the level as high as in adjacent pulpal axons, and showed immunoreactivity for TRPV1, TRPA1, and TREK-1. Pulpal sensory axons adjacent to odontoblasts expressed mGluR5. Both the levels of glutamate in odontoblasts, and the expression of mGluR5 in nearby axons, were upregulated following dentin injury. The extracellular glutamate concentration was increased significantly after treating of odontoblast cell line with calcium permeable ionophore, suggesting glutamate release from odontoblasts. These findings lend morphological support to the hypothesis that odontoblasts contain glutamate as a potential neuroactive substance that may activate adjacent pulpal axons, and thus contribute to dental pain and hypersensitivity.
AB - Accumulating evidence indicates that odontoblasts act as sensor cells, capable of triggering action potentials in adjacent pulpal nociceptive axons, suggesting a paracrine signaling via a currently unknown mediator. Since glutamate can mediate signaling by non-neuronal cells, and peripheral axons may express glutamate receptors (GluR), we hypothesized that the expression of high levels of glutamate, and of sensory receptors in odontoblasts, combined with an expression of GluR in adjacent pulpal axons, is the morphological basis for odontoblastic sensory signaling. To test this hypothesis, we investigated the expression of glutamate, the thermo- and mechanosensitive ion channels transient receptor potential vanilloid 1 (TRPV1), transient receptor potential ankyrin 1 (TRPA1), and TWIK-1-related K + channel (TREK-1), and the glutamate receptor mGluR5, in a normal rat dental pulp, and following dentin injury. We also examined the glutamate release from odontoblast in cell culture. Odontoblasts were enriched with glutamate, at the level as high as in adjacent pulpal axons, and showed immunoreactivity for TRPV1, TRPA1, and TREK-1. Pulpal sensory axons adjacent to odontoblasts expressed mGluR5. Both the levels of glutamate in odontoblasts, and the expression of mGluR5 in nearby axons, were upregulated following dentin injury. The extracellular glutamate concentration was increased significantly after treating of odontoblast cell line with calcium permeable ionophore, suggesting glutamate release from odontoblasts. These findings lend morphological support to the hypothesis that odontoblasts contain glutamate as a potential neuroactive substance that may activate adjacent pulpal axons, and thus contribute to dental pain and hypersensitivity.
KW - electron microscopy
KW - glutamate
KW - glutamate receptor
KW - neuroactive substance
KW - odontoblast
KW - signaling
UR - https://www.scopus.com/pages/publications/84984692521
U2 - 10.1016/j.neuroscience.2016.08.029
DO - 10.1016/j.neuroscience.2016.08.029
M3 - Article
C2 - 27555550
AN - SCOPUS:84984692521
SN - 0306-4522
VL - 335
SP - 54
EP - 63
JO - Neuroscience
JF - Neuroscience
ER -