Recyclable Magnetic Cu-MOF-74-Catalyzed C(sp2)-N Coupling and Cyclization under Microwave Irradiation: Synthesis of Imidazo[1,2-c]quinazolines and Their Analogues

Seong Weon Lee, Pham Duy Quang Dao, Ho Jin Lim, Chan Sik Cho

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Magnetic Cu-MOF-74 (Fe3O4@SiO2@Cu-MOF-74) was synthesized for the first time by grafting MOF-74 (copper as the metal center) on the surface of core-shell magnetic carboxyl-functionalized silica gel (Fe3O4@SiO2-COOH), which was prepared by coating core Fe3O4 nanoparticles with hydrolyzed 2-(3-(triethoxysilyl)propyl)succinic anhydride and tetraethyl orthosilicate. The structure of Fe3O4@SiO2@Cu-MOF-74 nanoparticles was characterized by Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and transmission electron microscopy (TEM). The prepared Fe3O4@SiO2@Cu-MOF-74 nanoparticles could be applied as a recyclable catalyst to the synthesis of N-fused hybrid scaffolds. 2-(2-Bromoaryl)imidazoles and 2-(2-bromovinyl)imidazoles were coupled and cyclized with cyanamide in DMF in the presence of a catalytic amount of Fe3O4@SiO2@Cu-MOF-74 along with a base to give imidazo[1,2-c]quinazolines and imidazo[1,2-c]pyrimidines, respectively, in good yields. The Fe3O4@SiO2@Cu-MOF-74 catalyst could be easily recovered by a super magnetic bar and recycled more than four times while almost maintaining catalytic activity.

Original languageEnglish
Pages (from-to)16218-16227
Number of pages10
JournalACS Omega
Volume8
Issue number18
DOIs
StatePublished - 9 May 2023

Fingerprint

Dive into the research topics of 'Recyclable Magnetic Cu-MOF-74-Catalyzed C(sp2)-N Coupling and Cyclization under Microwave Irradiation: Synthesis of Imidazo[1,2-c]quinazolines and Their Analogues'. Together they form a unique fingerprint.

Cite this