Abstract
Transcription factors are key regulators of gene expression and play pivotal roles in all aspects of living organisms. Therefore, identifcation and functional characterization of transcription factors is a prerequisite step toward understanding life. This article reviews molecular and biological functions of the two transcription regulator families, GROWTH-REGULATING FACTOR (GRF) and GRF-INTERACTING FACTOR (GIF), which have only recently been recognized. A myriad of experimental evidence clearly illustrates that GRF and GIF are bona fde partner proteins and form a plant-specifc transcriptional complex. One of the most conspicuous outcomes from this research feld is that the GRF-GIF duo endows the primordial cells of vegetative and reproductive organs with a meristematic specifcation state, guaranteeing the supply of cells for organogenesis and successful reproduction. It has recently been shown that GIF1 proteins, also known as ANGUSTIFOLIA3, recruit chromatin remodelling complexes to target genes, and that AtGRF expression is directly activated by the foral identity factors, APETALA1 and SEPALLATA3, providing an important insight into understanding of the action of GRF-GIF. Moreover, GRF genes are extensively subjected to post-transcriptional control by microRNA396, revealing the presence of a complex regulatory circuit in regulation of plant growth and development by the GRF-GIF duo.
Original language | English |
---|---|
Pages (from-to) | 6093-6107 |
Number of pages | 15 |
Journal | Journal of Experimental Botany |
Volume | 66 |
Issue number | 20 |
DOIs | |
State | Published - Oct 2015 |
Keywords
- Chromatin remodelling
- GRF-INTERACTING FACTOR
- GROWTH-REGULATING FACTOR
- Meristematic status
- MicroRNA396
- Organ primordium