TY - JOUR
T1 - Resting-state functional connectivity of the striatum predicts improvement in negative symptoms and general functioning in patients with first-episode psychosis
T2 - A 1-year naturalistic follow-up study
AU - Oh, Sanghoon
AU - Kim, Minah
AU - Kim, Taekwan
AU - Lee, Tae Young
AU - Kwon, Jun Soo
N1 - Publisher Copyright:
© The Royal Australian and New Zealand College of Psychiatrists 2019.
PY - 2020/5/1
Y1 - 2020/5/1
N2 - Objective: The persistent disease burden of psychotic disorders often comes from negative symptoms; however, prognostic biomarkers for negative symptoms have not been fully understood. This study investigated whether the altered functional connectivity of the striatum predicts improvement in negative symptoms and functioning after 1 year of usual treatment in patients with first-episode psychosis. Methods: Resting-state functional magnetic imaging was obtained from 40 first-episode psychosis patients and 40 age- and sex-matched healthy control subjects. Whole-brain functional connectivity maps were generated with subdivisions of the striatum as seed regions and compared between first-episode psychosis patients and healthy controls. In 22 patients with first-episode psychosis, follow-up assessments of negative symptom severity and general functional status were conducted after 1 year of usual treatment. Multiple regression analyses were performed to examine factors predictive of symptomatic or functional improvements over the 1-year period. Results: First-episode psychosis patients showed greater functional connectivity between the left dorsal caudate and left primary motor cortex, as well as between the left ventral rostral putamen and right temporal occipital fusiform cortex, than healthy controls. Lower functional connectivity between the right dorsal rostral putamen and anterior cingulate cortex was observed in the first-episode psychosis patients than in healthy controls. In multiple regression analyses, lower functional connectivity of the left dorsal caudate–left primary motor cortex/right dorsal rostral putamen–anterior cingulate cortex predicted improvement in negative symptoms. In addition, lower right dorsal rostral putamen–anterior cingulate cortex functional connectivity predicted improvement in general functioning. Conclusion: These results suggest that altered striatal functional connectivity can be a potent neurobiological marker in the prognosis prediction of first-episode psychosis. Furthermore, altered striatal functional connectivity may provide a potential target in developing treatments for negative symptoms.
AB - Objective: The persistent disease burden of psychotic disorders often comes from negative symptoms; however, prognostic biomarkers for negative symptoms have not been fully understood. This study investigated whether the altered functional connectivity of the striatum predicts improvement in negative symptoms and functioning after 1 year of usual treatment in patients with first-episode psychosis. Methods: Resting-state functional magnetic imaging was obtained from 40 first-episode psychosis patients and 40 age- and sex-matched healthy control subjects. Whole-brain functional connectivity maps were generated with subdivisions of the striatum as seed regions and compared between first-episode psychosis patients and healthy controls. In 22 patients with first-episode psychosis, follow-up assessments of negative symptom severity and general functional status were conducted after 1 year of usual treatment. Multiple regression analyses were performed to examine factors predictive of symptomatic or functional improvements over the 1-year period. Results: First-episode psychosis patients showed greater functional connectivity between the left dorsal caudate and left primary motor cortex, as well as between the left ventral rostral putamen and right temporal occipital fusiform cortex, than healthy controls. Lower functional connectivity between the right dorsal rostral putamen and anterior cingulate cortex was observed in the first-episode psychosis patients than in healthy controls. In multiple regression analyses, lower functional connectivity of the left dorsal caudate–left primary motor cortex/right dorsal rostral putamen–anterior cingulate cortex predicted improvement in negative symptoms. In addition, lower right dorsal rostral putamen–anterior cingulate cortex functional connectivity predicted improvement in general functioning. Conclusion: These results suggest that altered striatal functional connectivity can be a potent neurobiological marker in the prognosis prediction of first-episode psychosis. Furthermore, altered striatal functional connectivity may provide a potential target in developing treatments for negative symptoms.
KW - First-episode psychosis
KW - negative symptoms
KW - prognosis prediction
KW - resting-state functional connectivity
KW - striatum
UR - http://www.scopus.com/inward/record.url?scp=85075152976&partnerID=8YFLogxK
U2 - 10.1177/0004867419885452
DO - 10.1177/0004867419885452
M3 - Article
C2 - 31702384
AN - SCOPUS:85075152976
SN - 0004-8674
VL - 54
SP - 509
EP - 518
JO - Australian and New Zealand Journal of Psychiatry
JF - Australian and New Zealand Journal of Psychiatry
IS - 5
ER -