TY - JOUR
T1 - Reversible tissue sticker inspired by chemistry in plant-pathogen relationship
AU - Lee, Jeehee
AU - Park, Eunsook
AU - Lee, Kyueui
AU - Shin, Mikyung
AU - Lee, Soohyeon
AU - Moreno-Villaécija, Miguel Ángel
AU - Lee, Haeshin
N1 - Publisher Copyright:
© 2022
PY - 2023/1/1
Y1 - 2023/1/1
N2 - Plants release phenolic molecules to protect against invading pathogens. In plant-microorganism relationships, phenolics bind to surface oligosaccharides, inactivating microorganism activities. Inspired by phenol-saccharide interactions in plant defense systems, we designed an adhesive sealant. By screening 16 different saccharides, the O-acetyl group, rich in glucomannan (GM), exhibited rapid, robust binding with the galloyl moiety of a model phenolic molecule, tannic acid (TA). Furthermore, the interaction showed both pH and temperature (upper critical solution temperature) sensitivities. Utilizing O-acetyl-galloyl interactions, materials of all dimensions from beads (0D) to strings (1D), films (2D), and objects (3D) could be prepared, as a suitable platform for printing techniques. GMTA films are elastic, adhesive, water-resistant, and effectively sealed perforations, as demonstrated by (1) a lung incision followed by an air inflation model and (2) a thoracic diaphragm model. Statement of significance: In nature, phenolic molecules are 'nearly always' physically bound with polysaccharides, indicating that the phenolics widen the functions of polysaccharides. An example includes that phenolic-polysaccharide interactions are key defense mechanisms against microbial infection in plants whereas polysaccharide alone functions poorly. Despite the ubiquitous biochemistry of polysaccharide-phenolic interactions, efforts on understanding binding chemistry focusing on phenol/polysaccharide interactions is little. This study is important because we found for the first time that O-acetyl group is the moiety in polysaccharides to which phenolic cis-diol and/or cis-triol is spontaneously bound. The phenol-polysaccharide interaction is non-covalent yet robust, kinetically fast, and reversible. Inspired by the interaction chemistry, a simple mixture of phenolic molecules and O-acetyl group containing polysaccharides such as glucomannan opens a promising fabrication strategy toward functional polysaccharide-based material.
AB - Plants release phenolic molecules to protect against invading pathogens. In plant-microorganism relationships, phenolics bind to surface oligosaccharides, inactivating microorganism activities. Inspired by phenol-saccharide interactions in plant defense systems, we designed an adhesive sealant. By screening 16 different saccharides, the O-acetyl group, rich in glucomannan (GM), exhibited rapid, robust binding with the galloyl moiety of a model phenolic molecule, tannic acid (TA). Furthermore, the interaction showed both pH and temperature (upper critical solution temperature) sensitivities. Utilizing O-acetyl-galloyl interactions, materials of all dimensions from beads (0D) to strings (1D), films (2D), and objects (3D) could be prepared, as a suitable platform for printing techniques. GMTA films are elastic, adhesive, water-resistant, and effectively sealed perforations, as demonstrated by (1) a lung incision followed by an air inflation model and (2) a thoracic diaphragm model. Statement of significance: In nature, phenolic molecules are 'nearly always' physically bound with polysaccharides, indicating that the phenolics widen the functions of polysaccharides. An example includes that phenolic-polysaccharide interactions are key defense mechanisms against microbial infection in plants whereas polysaccharide alone functions poorly. Despite the ubiquitous biochemistry of polysaccharide-phenolic interactions, efforts on understanding binding chemistry focusing on phenol/polysaccharide interactions is little. This study is important because we found for the first time that O-acetyl group is the moiety in polysaccharides to which phenolic cis-diol and/or cis-triol is spontaneously bound. The phenol-polysaccharide interaction is non-covalent yet robust, kinetically fast, and reversible. Inspired by the interaction chemistry, a simple mixture of phenolic molecules and O-acetyl group containing polysaccharides such as glucomannan opens a promising fabrication strategy toward functional polysaccharide-based material.
KW - Bio-inspired
KW - Hydrogen bonding
KW - O-acetyl
KW - Phenol
KW - Polysaccharide
UR - http://www.scopus.com/inward/record.url?scp=85142837445&partnerID=8YFLogxK
U2 - 10.1016/j.actbio.2022.09.075
DO - 10.1016/j.actbio.2022.09.075
M3 - Article
C2 - 36216125
AN - SCOPUS:85142837445
SN - 1742-7061
VL - 155
SP - 247
EP - 257
JO - Acta Biomaterialia
JF - Acta Biomaterialia
ER -