Revisiting TiS2 as a diffusion-dependent cathode with promising energy density for all-solid-state lithium secondary batteries

Ju Young Kim, Joonam Park, Seok Hun Kang, Seungwon Jung, Dong Ok Shin, Myeong Ju Lee, Jimin Oh, Kwang Man Kim, Jochen Zausch, Young Gi Lee, Yong Min Lee

Research output: Contribution to journalArticlepeer-review

40 Scopus citations

Abstract

All-solid-state lithium batteries require a well-designed electrode structure to efficiently charge and discharge active materials. Mimicking electrodes impregnated with liquid electrolyte in lithium-ion batteries, composite-type all-solid-state electrodes have been widely utilized. An alternative electrode configuration is the diffusion-dependent electrode, which consists mostly of active material. Unlike the composite electrode, which uses lithium-ion transport via a percolated solid electrolyte, the diffusion-dependent electrode uses interparticle lithium-ion diffusion through active material particles with a seamless interface. In this design, the energy density dramatically increases owing to the increased content of active material in the electrode. Herein, titanium disulfide (TiS2) is systematically explored as an appropriate material applicable as a diffusion-dependent cathode owing to its outstanding mechanical and electrochemical properties. Based on the morphology-based study of TiS2 particles, the diffusion-dependent cathode composed of spherical TiS2 nanoparticles stably delivers high areal and volumetric capacities of ~ 9.43 mAh/cm2 and ~ 578 mAh/cm3, respectively, at a loading level of 45.6 mg/cm2, which corresponds to specific energy densities of 414 Wh/kgelectrode and 1155 Wh/Lelectrode. The proposed TiS2 electrode, which can be fabricated by a practical slurry-based process using a conventional binder and solvent, is a strong candidate as a cathode for commercially available all-solid-state lithium batteries.

Original languageEnglish
Pages (from-to)289-296
Number of pages8
JournalEnergy Storage Materials
Volume41
DOIs
StatePublished - Oct 2021

Keywords

  • All-solid-state lithium batteries
  • Diffusion-dependent
  • Electrode design
  • Titanium disulfide

Fingerprint

Dive into the research topics of 'Revisiting TiS2 as a diffusion-dependent cathode with promising energy density for all-solid-state lithium secondary batteries'. Together they form a unique fingerprint.

Cite this