3 Scopus citations

Abstract

Iron chelation is a promising therapeutic strategy for cancer that works, in part, by inducing overexpression of N-myc downstream-regulated gene 1 protein (NDRG1), a known growth inhibitor and metastasis suppressor. However, details of the signaling cascades that convert physical stress into a biological response remain elusive. We investigated the role of RGS19, a regulator of G-protein signaling, in iron chelator-induced NDRG1 overexpression in HeLa cells. Knockdown of RGS19 diminished the expression of genes involved in desferrioxamine (DFO)-induced growth inhibition. Conversely, overexpression of RGS19 enhanced the expression of these genes. Moreover, overexpression of RGS19 reduced cell viability. Overexpression of G-protein alpha subunit i3 (Gαi3) repressed the induction of NDRG1 expression. Selective inhibition of downstream targets of Gαi3 abrogated DFO-induced overexpression of NDRG1. DFO protected RGS19 from proteolysis induced by GAIP interacting protein N terminus (GIPN); moreover, an iron-deficient RGS19 mutant was stable in the presence of GIPN and retained GTPase-activating protein activity. RGS19 was co-purified with iron and showed unique UV-absorption characteristics frequently observed in iron-binding proteins. This study demonstrates that RGS19 senses cellular iron availability and is stabilized under iron-depleted conditions, resulting in the induction of a growth-inhibitory signal.

Original languageEnglish
Pages (from-to)168-175
Number of pages8
JournalBiochemical and Biophysical Research Communications
Volume464
Issue number1
DOIs
StatePublished - 20 Jul 2015

Keywords

  • Cysteine string motif
  • Iron-binding protein
  • N-myc downstream-regulated gene 1 protein
  • Regulator of G-protein signaling

Fingerprint

Dive into the research topics of 'RGS19 converts iron deprivation stress into a growth-inhibitory signal'. Together they form a unique fingerprint.

Cite this