Robust Light Detection from Ultraviolet to Near-Infrared with ZnGa2O4/p-Si Heterojunction Photodiode and Its Application for Optoelectronic Physically Unclonable Functions

Wangmyung Choi, Seungme Kang, Yeong Jae Kim, Youngwoo Yoo, Wonjun Shin, Yeongkwon Kim, Young Joon Kim, Byung Chul Jang, Jaehyun Hur, Hocheon Yoo

Research output: Contribution to journalArticlepeer-review

Abstract

The Si-based self-powered broadband photodiode (SSBP) is prized for its ability to swiftly detect light across a wide spectrum without requiring an external voltage. However, boosting its efficiency remains challenging due to its high refractive index and limited UV light penetration. A combination of Si with ZnGa2O4, an ultra-wide-bandgap spinel material, can bring new opportunities to address these shortcomings of SSBP. In this study, a ZnGa2O4/p-Si heterojunction photodiode is presented, which is capable of detecting UV to near-infrared light autonomously. Operating without bias, this device exhibits excellent rectification and detects wavelengths from 265 to 1000 nm, achieving impressive performance metrics such as a photo-to-dark current ratio of 5.8 × 104, response speed of less than 3 ms, responsivity of 117 mA W−1, and specific detectivity of 5.5 × 1012 Jones while the photodiode demonstrates exceptional stability and durability under harsh conditions. The versatility of this device is demonstrated by applying it to the optical imaging sensors and physically unclonable security devices. This study provides new inspirations for the development of the energy-efficient and emerging optical sensing technologies.

Original languageEnglish
Article number2400649
JournalAdvanced Electronic Materials
Volume10
Issue number11
DOIs
StatePublished - Nov 2024

Keywords

  • Type-I heterojunction
  • ZnGaO film
  • broadband photodiode
  • security devices
  • self-powered operation

Fingerprint

Dive into the research topics of 'Robust Light Detection from Ultraviolet to Near-Infrared with ZnGa2O4/p-Si Heterojunction Photodiode and Its Application for Optoelectronic Physically Unclonable Functions'. Together they form a unique fingerprint.

Cite this