Role of synbiotics containing d-allulose in the alteration of body fat and hepatic lipids in diet-induced obese mice

Bo Ra Choi, Eun Young Kwon, Hye Jin Kim, Myung Sook Choi

Research output: Contribution to journalArticlepeer-review

22 Scopus citations

Abstract

The effects of allulose and two probiotic species on diet-induced obese (DIO) mice were investigated. Lactobacillus sakei LS03 (109 cfu/day) and Leuconostoc kimchii GJ2 (109 cfu/day) were used as probiotics, and allulose (AL) as a prebiotic. The synergistic effect of prebiotics and probiotics in improving obesity was evaluated. Orally fed Lactobacillus sakei LS03 (LS) or Leuconostoc kimchii GJ2 (GJ), significantly decreased hepatic triglyceride (TG) and fatty acid (FA) compared to the high-fat diet (HFD) control. AL markedly decreased visceral adiposity and pro-inflammatory adipokines (leptin and resistin) and cytokines (IL-6 and IL-1β) as well as hepatic TG and FA. In addition, AL exerted synergic effects with probiotics (LS and/or GJ) on the reduction of visceral white adipose tissue (WAT), associated with a decreased leptin: adiponectin ratio. There was no significant differences between the AL-SL and AL group, allulose and GJ combination (AL-GJ) was more effective than allulose in improving dyslipidemia, and decreasing WAT weight and hepatic FA, suggesting allulose may act as a favorable prebiotic for GJ supplement than LS. Combination of allulose with LS and GJ supplementation (AL-LSGJ) was the most effective for improving obesity related complications among the synbiotics groups containing allulose. In conclusion, this study demonstrated that the synbiotic mixture with allulose was more effective in suppressing diet-induced obese (DIO) and its complications via the regulation of lipid metabolism, than the probiotics or allulose alone, suggesting allulose may act as a prebiotic for the two probiotics tested in the study. This new synbiotic mixture with allulose may help ameliorate the deleterious effects of diet-induced obesity and contribute to the growth of the food industry.

Original languageEnglish
Article number1797
JournalNutrients
Volume10
Issue number11
DOIs
StatePublished - 19 Nov 2018

Keywords

  • Body fat reduction
  • D-allulose
  • Obesity
  • Prebiotics

Fingerprint

Dive into the research topics of 'Role of synbiotics containing d-allulose in the alteration of body fat and hepatic lipids in diet-induced obese mice'. Together they form a unique fingerprint.

Cite this