TY - JOUR
T1 - S-nitrosocysteine-responsive genes modulate diverse regulatory pathways in Oryza sativa
T2 - A transcriptome profiling study
AU - Mun, Bong Gyu
AU - Lee, Sang Uk
AU - Hussain, Adil
AU - Kim, Hyun Ho
AU - Rolly, Nkulu Kabange
AU - Jung, Ki Hong
AU - Yun, Byung Wook
N1 - Publisher Copyright:
© CSIRO.
PY - 2018
Y1 - 2018
N2 - Rice (Oryza sativa L.) is a major food crop and also a well-established genetic model. Nitric oxide (NO) and its derivatives are important signalling molecules that actively participate in various signalling pathways in response to different stresses. In this study, we performed RNA-seq mediated transcriptomic analysis of rice after treatment with the nitric oxide donor, S-nitroso-L-cysteine (CySNO), generating an average of 37.5 and 41.5 million reads from control and treated leaf samples respectively. More than 95% of the reads were successfully mapped to the O. sativa reference genome yielding a total of 33 539 differentially expressed genes (DEGs, P < 0.05). Further analyses identified 825 genes with at least 2-fold change in the expression following treatment with CySNO (P < 0.01). The DEGs identified were involved in diverse molecular functions such as catalytic activity, binding, transport, and receptor activity and were mostly located in the membrane, organelles such as nucleus, Golgi apparatus and mitochondria. DEGs also contained several genes that regulate responses to abiotic stresses such as drought, heat, cold and salt stress and biotic stresses. We also found significantly similar expression patterns of CySNO-responsive DEGs of rice with the CySNO-responsive DEGs of Arabidopsis in a previous study. Expression patterns of genes involved in key biological functions were verified using quantitative real time (qRT)-PCR. The findings of this study suggest that NO regulates the transcriptional control of genes involved in a wide variety of physiological functions in rice, and that NO-mediated transcriptional networks are highly conserved across the plant kingdom. This study provides useful information regarding the transcriptional response of plants to nitrosative stress.
AB - Rice (Oryza sativa L.) is a major food crop and also a well-established genetic model. Nitric oxide (NO) and its derivatives are important signalling molecules that actively participate in various signalling pathways in response to different stresses. In this study, we performed RNA-seq mediated transcriptomic analysis of rice after treatment with the nitric oxide donor, S-nitroso-L-cysteine (CySNO), generating an average of 37.5 and 41.5 million reads from control and treated leaf samples respectively. More than 95% of the reads were successfully mapped to the O. sativa reference genome yielding a total of 33 539 differentially expressed genes (DEGs, P < 0.05). Further analyses identified 825 genes with at least 2-fold change in the expression following treatment with CySNO (P < 0.01). The DEGs identified were involved in diverse molecular functions such as catalytic activity, binding, transport, and receptor activity and were mostly located in the membrane, organelles such as nucleus, Golgi apparatus and mitochondria. DEGs also contained several genes that regulate responses to abiotic stresses such as drought, heat, cold and salt stress and biotic stresses. We also found significantly similar expression patterns of CySNO-responsive DEGs of rice with the CySNO-responsive DEGs of Arabidopsis in a previous study. Expression patterns of genes involved in key biological functions were verified using quantitative real time (qRT)-PCR. The findings of this study suggest that NO regulates the transcriptional control of genes involved in a wide variety of physiological functions in rice, and that NO-mediated transcriptional networks are highly conserved across the plant kingdom. This study provides useful information regarding the transcriptional response of plants to nitrosative stress.
KW - nitric oxide
KW - NO
KW - RNA-seq
KW - transcriptional response.
UR - http://www.scopus.com/inward/record.url?scp=85046839724&partnerID=8YFLogxK
U2 - 10.1071/FP17249
DO - 10.1071/FP17249
M3 - Article
C2 - 32290965
AN - SCOPUS:85046839724
SN - 1445-4408
VL - 45
SP - 630
EP - 644
JO - Functional Plant Biology
JF - Functional Plant Biology
IS - 6
ER -