S-Noetherian Properties of Composite Ring Extensions

Jung Wook Lim, Dong Yeol Oh

Research output: Contribution to journalArticlepeer-review

28 Scopus citations

Abstract

Let R be a commutative ring with identity and S a multiplicative subset of R. We say that R is an S-Noetherian ring if for each ideal I of R, there exist an s ∈ S and a finitely generated ideal J of R such that sI ⊆ J ⊆ I. In this article, we study transfers of S-Noetherian property to the composite semigroup ring and the composite generalized power series ring.

Original languageEnglish
Pages (from-to)2820-2829
Number of pages10
JournalCommunications in Algebra
Volume43
Issue number7
DOIs
StatePublished - 3 Jul 2015

Keywords

  • D + E[Γ*]
  • D + [[E ]]
  • S-Noetherian ring, S-Noetherian module

Fingerprint

Dive into the research topics of 'S-Noetherian Properties of Composite Ring Extensions'. Together they form a unique fingerprint.

Cite this