TY - JOUR
T1 - S-Noetherian rings and their extensions
AU - Baeck, Jongwook
AU - Lee, Gangyong
AU - Lim, Jung Wook
N1 - Publisher Copyright:
© 2016, Mathematical Society of the Rep. of China. All rights reserved.
PY - 2016
Y1 - 2016
N2 - Let R be an associative ring with identity, S a multiplicative subset of R, and M a right R-module. Then M is called an S-Noetherian module if for each submodule N of M, there exist an element s ∈ S and a finitely generated submodule F of M such that Ns ⊆ F ⊆ N, and R is called a right S-Noetherian ring if RR is an S-Noetherian module. In this paper, we study some properties of right S-Noetherian rings and S-Noetherian modules. Among other things, we study Ore extensions, skew- Laurent polynomial ring extensions, and power series ring extensions of S-Noetherian rings.
AB - Let R be an associative ring with identity, S a multiplicative subset of R, and M a right R-module. Then M is called an S-Noetherian module if for each submodule N of M, there exist an element s ∈ S and a finitely generated submodule F of M such that Ns ⊆ F ⊆ N, and R is called a right S-Noetherian ring if RR is an S-Noetherian module. In this paper, we study some properties of right S-Noetherian rings and S-Noetherian modules. Among other things, we study Ore extensions, skew- Laurent polynomial ring extensions, and power series ring extensions of S-Noetherian rings.
KW - Hilbert basis theorem
KW - Ore extension
KW - Right S-Noetherian ring
KW - S-Noetherian module
UR - http://www.scopus.com/inward/record.url?scp=84997447771&partnerID=8YFLogxK
U2 - 10.11650/tjm.20.2016.7436
DO - 10.11650/tjm.20.2016.7436
M3 - Article
AN - SCOPUS:84997447771
SN - 1027-5487
VL - 20
SP - 1231
EP - 1250
JO - Taiwanese Journal of Mathematics
JF - Taiwanese Journal of Mathematics
IS - 6
ER -